Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2022, Vol. 17 Issue (3): 37   https://doi.org/10.1007/s11465-022-0693-3
  本期目录
State-of-the-art on theories and applications of cable-driven parallel robots
Zhaokun ZHANG1,2,3, Zhufeng SHAO1,2(), Zheng YOU4, Xiaoqiang TANG1,2, Bin ZI5, Guilin YANG6, Clément GOSSELIN7, Stéphane CARO8
1. State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2. Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipment and Control, Tsinghua University, Beijing 100084, China
3. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
4. Department of Precision Instrument, Tsinghua University, Beijing 100084, China
5. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
6. Ningbo Institute of Industrial Technology, Chinese Academy of Sciences (CAS), Ningbo 315201, China
7. Department of Mechanical Engineering, Université Laval, Quebec QC G1V 0A6, Canada
8. Laboratory of Digital Sciences of Nantes, National Centre for Scientific Research, Nantes 44321, France
 全文: PDF(4845 KB)   HTML
Abstract

Cable-driven parallel robot (CDPR) is a type of high-performance robot that integrates cable-driven kinematic chains and parallel mechanism theory. It inherits the high dynamics and heavy load capacities of the parallel mechanism and significantly improves the workspace, cost and energy efficiency simultaneously. As a result, CDPRs have had irreplaceable roles in industrial and technological fields, such as astronomy, aerospace, logistics, simulators, and rehabilitation. CDPRs follow the cutting-edge trend of rigid–flexible fusion, reflect advanced lightweight design concepts, and have become a frontier topic in robotics research. This paper summarizes the kernel theories and developments of CDPRs, covering configuration design, cable-force distribution, workspace and stiffness, performance evaluation, optimization, and motion control. Kinematic modeling, workspace analysis, and cable-force solution are illustrated. Stiffness and dynamic modeling methods are discussed. To further promote the development, researchers should strengthen the investigation in configuration innovation, rapid calculation of workspace, performance evaluation, stiffness control, and rigid–flexible coupling dynamics. In addition, engineering problems such as cable materials, reliability design, and a unified control framework require attention.

Key wordscable-driven parallel robot    kinematics    optimization    dynamics    control
收稿日期: 2022-02-02      出版日期: 2022-09-22
Corresponding Author(s): Zhufeng SHAO   
 引用本文:   
. [J]. Frontiers of Mechanical Engineering, 2022, 17(3): 37.
Zhaokun ZHANG, Zhufeng SHAO, Zheng YOU, Xiaoqiang TANG, Bin ZI, Guilin YANG, Clément GOSSELIN, Stéphane CARO. State-of-the-art on theories and applications of cable-driven parallel robots. Front. Mech. Eng., 2022, 17(3): 37.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-022-0693-3
https://academic.hep.com.cn/fme/CN/Y2022/V17/I3/37
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Abbreviations
3D Three dimensional
AFI Average force index
CDPR Cable-driven parallel robot
CSPR Cable-suspended parallel robot
CSS Constant stiffness space
DFW Dynamic feasible workspace
DOF Degree-of-freedom
FAST Five-hundred-meter Aperture Spherical radio Telescope
FCW Force closure workspace
FEM Finite element method
FFW Force feasible workspace
LPV Linear parameter-varying
MFI Maximum force index
P, R, T Prismatic, rotation, translation joints, respectively
PID Proportional-integral-derivative
VSD Variable stiffness device
WCW Wrench closure workspace
WFW Wrench feasible workspace
Variables
Ai Cross-sectional area of the ith cable
ai Position of cable outlet point Ai on the base
bi Position of the cable connection point Bi in the local coordinate system
Ei Elastic modulus of the ith cable
fik(p,a) Inverse kinematics of the CDPR
F External force acting on the end effector
G(T) Target function for cable force optimization
H Hessian matrix
I Unit matrix
J Structure matrix of the CDPR
J+ Moore?Penrose inverse of matrix J
K Stiffness matrix of the CDPR
K1 Geometric stiffness matrix or the active stiffness
K2 Cable stiffness matrix or the passive stiffness
li Length of the ith cable
L Vector of cable lengths
m Numbers of driving cables
M External torque acting on the end effector
n Number of terminal DOFs
p Order of the norm
p Position of the end effector
ORp Rotation matrix of the end effector frame {P?xyz} with respect to the base frame {O?XYZ}
ti Amplitude of the tension on the ith cable
tmin, tmax Minimum and maximum limits of the cable-force range, respectively
tref,i Target cable force of the ith cable
T Cable-force vector of the CDPR
ui Unit directional vector of the ith cable
W External wrench acting on the end effector
X Motion of the end effector
λ Arbitrary vector of n-dimension
  
1 V Gough , S G Whitehall . Universal tyre test machine. In: Proceedings of the 9th International Congress FISITA. London, 1962, 117– 137
2 D Stewart . A platform with six degrees of freedom. Proceedings of the Institution of Mechanical Engineers, 1965, 180( 1): 371– 386
https://doi.org/10.1243/PIME_PROC_1965_180_029_02
3 Z F Shao , X Q Tang , X Chen , L P Wang . Research on the inertia matching of the Stewart parallel manipulator. Robotics and Computer-Integrated Manufacturing, 2012, 28( 6): 649– 659
https://doi.org/10.1016/j.rcim.2012.04.001
4 Z K Zhang , L P Wang , Z F Shao . Improving the kinematic performance of a planar 3-RRR parallel manipulator through actuation mode conversion. Mechanism and Machine Theory, 2018, 130 : 86– 108
https://doi.org/10.1016/j.mechmachtheory.2018.08.011
5 S Staicu Z F Shao Z K Zhang X Q Tang L P Wang. Kinematic analysis of the X4 translational–rotational parallel robot. International Journal of Advanced Robotic Systems, 2018, 15(5): 1729881418803849
6 D Wang , L P Wang , J Wu , H Ye . An experimental study on the dynamics calibration of a 3-DOF parallel tool head. IEEE/ASME Transactions on Mechatronics, 2019, 24( 6): 2931– 2941
https://doi.org/10.1109/TMECH.2019.2942622
7 W Dong , Z J Du , Y Q Xiao , X G Chen . Development of a parallel kinematic motion simulator platform. Mechatronics, 2013, 23( 1): 154– 161
https://doi.org/10.1016/j.mechatronics.2012.10.004
8 R Clavel . DELTA: a fast robot with parallel geometry. In: Proceedings of the 18th International Symposium on Industrial Robots. New York: Springer, 1988, 91– 100
9 X Chen , X J Liu , F G Xie , T Sun . A comparison study on motion/force transmissibility of two typical 3-DOF parallel manipulators: the sprint Z3 and A3 tool heads. International Journal of Advanced Robotic Systems, 2014, 11( 1): 5
https://doi.org/10.5772/57458
10 C Gosselin . Cable-driven parallel mechanisms: state of the art and perspectives. Mechanical Engineering Reviews, 2014, 1( 1): DSM0004
https://doi.org/10.1299/mer.2014dsm0004
11 S E Landsberger. Design and construction of a cable-controlled, parallel link manipulator. Dissertation for the Doctoral Degree. Cambridge: Massachusetts Institute of Technology, 1984
12 M Tanaka , Y Seguchi , S Shimada . Kinemato-statics of SkyCam-type wire transport system. In: Proceedings of USA-Japan Symposium on Flexible Automation, Crossing Bridges: Advances in Flexible Automation and Robotics. Minneapolis Minnesota: The Society, 1988, 689– 694
13 J Albus , R Bostelman , N Dagalakis . The NIST robocrane. Journal of Robotic Systems, 1993, 10( 5): 709– 724
https://doi.org/10.1002/rob.4620100509
14 NIST. Schematics: TensileTruss Robotic System and NIST’s RoboCrane. Available from NIST website, 2021
15 NIST. Gantries. Available from NIST website, 2017
16 NIST. Wide View: RoboCrane® for Aircraft Maintenance. Available from NIST website, 2006
17 NIST. Material Handling. Available from NIST website, 2017
18 NIST. Robocrane: large scale manufacturing using cable control. Available from NIST website, 2021
19 Wikipedia. RoboCrane. Available from Wikipedia website, 2021
20 L Qian , R Yao , J H Sun , J L Xu , Z C Pan , P Jiang . FAST: its scientific achievements and prospects. The Innovation, 2020, 1( 3): 100053
https://doi.org/10.1016/j.xinn.2020.100053
21 X Q Tang , Z F Shao . Trajectory generation and tracking control of a multi-level hybrid support manipulator in FAST. Mechatronics, 2013, 23( 8): 1113– 1122
https://doi.org/10.1016/j.mechatronics.2013.09.002
22 G El-Ghazaly , M Gouttefarde , V Creuze . Adaptive terminal sliding mode control of a redundantly-actuated cable-driven parallel manipulator: CoGiRo. In: Pott A, Bruckmann T, eds. Cable-Driven Parallel Robots. Cham: Springer, 2014, 32 : 179– 200
https://doi.org/10.1007/978-3-319-09489-2_13
23 Industrial JASO. CraneBot: the flexible robotic crane. Available from JASO Industrial website, 2022
24 Y L Wu , H H Cheng , A Fingrut , K Crolla , Y Yam , D Lau . CU-brick cable-driven robot for automated construction of complex brick structures: from simulation to hardware realization. In: Proceedings of 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). Brisbane: IEEE, 2018, 166– 173
https://doi.org/10.1109/SIMPAR.2018.8376287
25 T Bruckmann . Reichert C, Meik M, Lemmen P, Spengler A, Mattern H, König M. Concept studies of automated construction using cable-driven parallel robots. In: Gosselin C, Cardou P, Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Cham: Springer, 2018, 53 : 364– 375
https://doi.org/10.1007/978-3-319-61431-1_31
26 Hephaestus. About the project. Available from Hephaestus website, 2017
27 W Pan , K Iturralde , T Bock , R G Martinez , O M Juez , P Finocchiaro . A Conceptual Design of an Integrated Façade System to Reduce Embodied Energy in Residential Buildings. Sustainability, 2020, 12( 14): 5730
28 T Bruckmann , C Sturm , L Fehlberg , C Reichert . An energy-efficient wire-based storage and retrieval system. In: Proceedings of 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong: IEEE, 2013, 631– 636
https://doi.org/10.1109/AIM.2013.6584163
29 P Miermeister , M Lächele , R Boss , C Masone , C Schenk , J Tesch , M Kerger , H Teufel , A Pott , H H Bülthoff . The cablerobot simulator large scale motion platform based on cable robot technology. In: Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon: IEEE, 2016, 3024– 3029
https://doi.org/10.1109/IROS.2016.7759468
30 T Bruckmann , L Mikelsons , T Brandt , D Schramm , A Pott , M Abdel-Maksoud . A novel tensed mechanism for simulation of maneuvers in wind tunnels. In: Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. San Diego: ASME, 2009, 17– 24
https://doi.org/10.1115/DETC2009-86718
31 D Farcy M Llibre P Carton C Lambert. SACSO: wire-driven parallel set-up for dynamic tests in wind tunnel–review of principles and advantages for identification of aerodynamic models for flight mechanics. In: Proceedings of the 8th ONERA-DLR Aerospace Symposium. Göttingen, 2007
32 E Barnett , C Gosselin . Large-scale 3D printing with a cable-suspended robot. Additive Manufacturing, 2015, 7 : 27– 44
https://doi.org/10.1016/j.addma.2015.05.001
33 B Zi , N Wang , S Qian , K L Bao . Design, stiffness analysis and experimental study of a cable-driven parallel 3D printer. Mechanism and Machine Theory, 2019, 132 : 207– 222
https://doi.org/10.1016/j.mechmachtheory.2018.11.003
34 S Qian , K L Bao , B Zi , N Wang . Kinematic calibration of a cable-driven parallel robot for 3D printing. Sensors, 2018, 18( 9): 2898
35 A Pott , P Tempel , A Verl , F Wulle . Design, implementation and long-term running experiences of the cable-driven parallel robot CaRo printer. In: Pott A, Bruckmann T, eds. CableCon 2019: Cable-Driven Parallel Robots. Cham: Springer, 2019, 74 : 379– 390
https://doi.org/10.1007/978-3-030-20751-9_32
36 S Masiero , A Celia , M Armani , G Rosati . A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs. Aging clinical and experimental research, 2006, 18( 6): 531– 535
37 D Surdilovic , R Bernhardt . STRING-MAN: a new wire robot for gait rehabilitation. In: Proceedings of IEEE International Conference on Robotics and Automation. New Orleans: IEEE, 2004, 2031– 2036
https://doi.org/10.1109/ROBOT.2004.1308122
38 D Surdilovic , R Bernhardt , T Schmidt , J Zhang . 26 STRING-MAN: A novel wire robot for gait rehabilitation. In: Bien Z Z, Stefanov D, eds. Advances in Rehabilitation Robotics. Lecture Notes in Control and Information Science. Berlin, Heidelberg: Springer, 2006, 306 : 413– 424
39 Y Mao , S K Agrawal . Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Transactions on Robotics, 2012, 28( 4): 922– 931
https://doi.org/10.1109/TRO.2012.2189496
40 Y Mao , X Jin , G Gera Dutta , J P Scholz , S K Agrawal . Human movement training with a cable driven ARm EXoskeleton (CAREX). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23( 1): 84– 92
https://doi.org/10.1109/TNSRE.2014.2329018
41 A Ming , T Higuchi . Study on multiple degree-of-freedom positioning mechanism using wires. I: concept, design and control. International Journal of the Japan Society for Precision Engineering, 1994, 28( 2): 131– 138
42 V D Nguyen . Constructing force-closure grasps. The International Journal of Robotics Research, 1988, 7( 3): 3– 16
https://doi.org/10.1177/027836498800700301
43 R Verhoeven. Analysis of the workspace of tendon-based Stewart platforms. Dissertation for the Doctoral Degree. Essen: University of Duisburg-Essen, 2004
44 A T Riechel P Bosscher H Lipkin I Ebert-Uphoff. Concept paper: cable-driven robots for use in hazardous environments. In: Proceedings of the 10th International Topical Meeting on Robotics and Remote Systems for Hazardous Environments. Gainesville, 2004
45 S Kawamura , H Kino , C Won . High-speed manipulation by using parallel wire-driven robots. Robotica, 2000, 18( 1): 13– 21
https://doi.org/10.1017/S0263574799002477
46 R G Roberts , T Graham , T Lippitt . On the inverse kinematics, statics, and fault tolerance of cable-suspended robots. Journal of Robotic Systems, 1998, 15( 10): 581– 597
https://doi.org/10.1002/(SICI)1097-4563(199810)15:10<581::AID-ROB4>3.0.CO;2-P
47 J A Seon , S Park , S Y Ko , J O Park . Cable configuration analysis to increase the rotational range of suspended 6-DOF cable driven parallel robots. In: Proceedings of 2016 the 16th International Conference on Control, Automation and Systems (ICCAS). Gyeongju: IEEE, 2016, 1047– 1052
https://doi.org/10.1109/ICCAS.2016.7832438
48 W F Wang. Research on redundantly restrained cable-driven parallel mechanism for simulating force. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2016
49 J Eden , C Song , Y Tan , D Oetomo , D Lau . CASPR-ROS: a generalised cable robot software in ROS for hardware. In: Gosselin C, Cardou P, Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Mechanisms and Machine Science. Cham: Springer, 2018, 53 : 50– 61
50 B T Gao , Z Y Zhu , J G Zhao , L J Jiang . Inverse kinematics and workspace analysis of a 3 DOF flexible parallel humanoid neck robot. Journal of Intelligent & Robotic Systems, 2017, 87( 2): 211– 229
https://doi.org/10.1007/s10846-017-0502-0
51 Z K Zhang , Z F Shao , L P Wang . Optimization and implementation of a high-speed 3-DOFs translational cable-driven parallel robot. Mechanism and Machine Theory, 2020, 145 : 103693
https://doi.org/10.1016/j.mechmachtheory.2019.103693
52 D Lau , D Oetomo , S K Halgamuge . Generalized modeling of multilink cable-driven manipulators with arbitrary routing using the cable-routing matrix. IEEE Transactions on Robotics, 2013, 29( 5): 1102– 1113
https://doi.org/10.1109/TRO.2013.2264866
53 W S Rone , W Saab , P Ben-Tzvi . Design, modeling, and integration of a flexible universal spatial robotic tail. Journal of Mechanisms and Robotics, 2018, 10( 4): 041001
https://doi.org/10.1115/1.4039500
54 C S Li , X Y Gu , H L Ren . A cable-driven flexible robotic grasper with Lego-like modular and reconfigurable joints. IEEE/ASME Transactions on Mechatronics, 2017, 22( 6): 2757– 2767
https://doi.org/10.1109/TMECH.2017.2765081
55 S E Landsberger , T B Sheridan . A new design for parallel link manipulator. In: Proceedings of 1985 IEEE International Conference on Systems. Tucson: IEEE, 1985, 812– 814
56 R Dekker , A Khajepour , S Behzadipour . Design and testing of an ultra-high-speed cable robot. International Journal of Robotics and Automation, 2006, 21( 1): 25– 34
https://doi.org/10.2316/Journal.206.2006.1.206-2824
57 S Behzadipour , A Khajepour . A new cable-based parallel robot with three degrees of freedom. Multibody System Dynamics, 2005, 13( 4): 371– 383
https://doi.org/10.1007/s11044-005-3985-6
58 Z K Zhang , Z F Shao , L P Wang , A J Shih . Optimal design of a high-speed pick-and-place cable-driven parallel robot. In: Gosselin C, Cardou P, Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Cham: Springer, 2018, 340– 352
https://doi.org/10.1007/978-3-319-61431-1_29
59 Q J Duan , V Vashista , S K Agrawal . Effect on wrench-feasible workspace of cable-driven parallel robots by adding springs. Mechanism and Machine Theory, 2015, 86 : 201– 210
https://doi.org/10.1016/j.mechmachtheory.2014.12.009
60 A Taghavi , S Behzadipour , N Khalilinasab , H Zohoor . Workspace improvement of two-link cable-driven mechanisms with spring cable. In: Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Berlin, Heidelberg: Springer, 2013, 201– 213
https://doi.org/10.1007/978-3-642-31988-4_13
61 J von Zitzewitz , L Fehlberg , T Bruckmann , H Vallery . Use of passively guided deflection units and energy-storing elements to increase the application range of wire robots. In: Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Berlin, Heidelberg: Springer, 2013, 167– 184
https://doi.org/10.1007/978-3-642-31988-4_11
62 G Q Xie , Z K Zhang , Z F Shao , L P Wang . Research on the orientation error of the translational cable-driven parallel robots. Journal of Mechanisms and Robotics, 2022, 14( 3): 031003
https://doi.org/10.1115/1.4052848
63 P Bosscher , R L II Williams , M Tummino . A concept for rapidly-deployable cable robot search and rescue systems. In: Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. California: ASME, 2005, 589– 598
https://doi.org/10.1115/DETC2005-84324
64 A Alikhani , S Behzadipour , A Alasty , S A Sadough Vanini . Design of a large-scale cable-driven robot with translational motion. Robotics and Computer-Integrated Manufacturing, 2011, 27( 2): 357– 366
https://doi.org/10.1016/j.rcim.2010.07.019
65 L Gagliardini , S Caro , M Gouttefarde , A Girin . Discrete reconfiguration planning for cable-driven parallel robots. Mechanism and Machine Theory, 2016, 100 : 313– 337
https://doi.org/10.1016/j.mechmachtheory.2016.02.014
66 H B Wang , J Kinugawa , K Kosuge . Exact kinematic modeling and identification of reconfigurable cable-driven robots with dual-pulley cable guiding mechanisms. IEEE/ASME Transactions on Mechatronics, 2019, 24( 2): 774– 784
https://doi.org/10.1109/TMECH.2019.2899016
67 A Pott. Cable-Driven Parallel Robots: Theory and Application. Cham: Springer, 2018
68 A Gonzalez-Rodriguez , F J Castillo-Garcia , E Ottaviano , P Rea , A G Gonzalez-Rodriguez . On the effects of the design of cable-driven robots on kinematics and dynamics models accuracy. Mechatronics, 2017, 43 : 18– 27
https://doi.org/10.1016/j.mechatronics.2017.02.002
69 X J Jin , J Jung , J L Piao , E Choi , J O Park , C S Kim . Solving the pulley inclusion problem for a cable-driven parallel robotic system: extended kinematics and twin-pulley mechanism. Journal of Mechanical Science and Technology, 2018, 32( 6): 2829– 2838
https://doi.org/10.1007/s12206-018-0539-4
70 E Idà , T Bruckmann , M Carricato . Rest-to-rest trajectory planning for underactuated cable-driven parallel robots. IEEE Transactions on Robotics, 2019, 35( 6): 1338– 1351
https://doi.org/10.1109/TRO.2019.2931483
71 Z K Zhang , G Q Xie , Z F Shao , C Gosselin . Kinematic calibration of cable-driven parallel robots considering the pulley kinematics. Mechanism and Machine Theory, 2022, 169 : 104648
https://doi.org/10.1016/j.mechmachtheory.2021.104648
72 A Pott . Influence of pulley kinematics on cable-driven parallel robots. In: Lenarcic J, Husty M, eds. Latest Advances in Robot Kinematics. Dordrecht: Springer, 2012, 197– 204
https://doi.org/10.1007/978-94-007-4620-6_25
73 V Schmidt , A Pott . Implementing extended kinematics of a cable-driven parallel robot in real-time. In: Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Berlin: Springer, 2013, 287– 298
https://doi.org/10.1007/978-3-642-31988-4_18
74 K Kozak , Q Zhou , J S Wang . Static analysis of cable-driven manipulators with non-negligible cable mass. IEEE Transactions on Robotics, 2006, 22( 3): 425– 433
https://doi.org/10.1109/TRO.2006.870659
75 R Yao X Q Tang T M Li G X Ren. Analysis and design of 3T cable-driven parallel manipulator for the feedback’s orientation of the large radio telescope. Journal of Mechanical Engineering, 2007, 43(11): 105– 109 (in Chinese)
76 X Q Tang Z F Shao R Yao. Research and application of cable-drive parallel mechanism and rigid parallel mechanism—research and development of the feed support system of the 40 m scale model of FAST. Beijing: Tsinghua University Press, 2020
77 S Q Fang. Design, modeling and motion control of tendon-based parallel manipulators. Dissertation for the Doctoral Degree. Essen: University of Duisburg-Essen, 2005
78 J P Merlet . Kinematics of the wire-driven parallel robot MARIONET using linear actuators. In: Proceedings of 2008 IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008, 3857– 3862
https://doi.org/10.1109/ROBOT.2008.4543803
79 M M Aref , R Oftadeh , H D Taghirad . Kinematics and Jacobian analysis of the KNTU CDRPM: a cable driven redundant parallel manipulator. In: Proceedings of the 17th Iranian Conference on Electrical Engineering. Tehran, 2009, 319– 324
80 M Fabritius , A Pott . A forward kinematic code for cable-driven parallel robots considering cable sagging and pulleys. In: Lenarčič J, Siciliano B, eds. Advances in Robot Kinematics 2020. ARK 2020. Springer Proceedings in Advanced Robotics. Cham: Springer, 2021, 15 : 218– 225
https://doi.org/10.1007/978-3-030-50975-0_27
81 J C Santos , M Gouttefarde . A real-time capable forward kinematics algorithm for cable-driven parallel robots considering pulley kinematics. In: Lenarčič J, Siciliano B, eds. Advances in Robot Kinematics 2020. ARK 2020. Springer Proceedings in Advanced Robotics. Cham: Springer, 2021, 15 : 199– 208
https://doi.org/10.1007/978-3-030-50975-0_25
82 M Hassan , A Khajepour . Optimization of actuator forces in cable-based parallel manipulators using convex analysis. IEEE Transactions on Robotics, 2008, 24( 3): 736– 740
https://doi.org/10.1109/TRO.2008.919289
83 P H Borgstrom , B L Jordan , B J Borgstrom , M J Stealey , G S Sukhatme , M A Batalin , W J Kaiser . NIMS-PL: a cable-driven robot with self-calibration capabilities. IEEE Transactions on Robotics, 2009, 25( 5): 1005– 1015
https://doi.org/10.1109/TRO.2009.2024792
84 T Bruckmann , A Pott , D Franitza , M Hiller . A modular controller for redundantly actuated tendon-based Stewart platforms. In: Proceedings of European Conference on Mechanism Science. Obergurgl, 2006, 1– 12
85 L Notash . Designing positive tension for wire-actuated parallel manipulators. In: Kumar V, Schmiedeler J, Sreenivasan S, Su H J, eds. Advances in Mechanisms, Robotics and Design Education and Research. Heidelberg: Springer, 2013, 14 : 251– 263
https://doi.org/10.1007/978-3-319-00398-6_20
86 C Gosselin , M Grenier . On the determination of the force distribution in overconstrained cable-driven parallel mechanisms. Meccanica, 2011, 46( 1): 3– 15
https://doi.org/10.1007/s11012-010-9369-x
87 A Pott , T Bruckmann , L Mikelsons . Closed-form force distribution for parallel wire robots. In: Kecskeméthy A, Müller A, eds. Computational Kinematics. Berlin: Springer, 2009, 25– 34
https://doi.org/10.1007/978-3-642-01947-0_4
88 W B Lim , S H Yeo , G L Yang . Optimization of tension distribution for cable-driven manipulators using tension-level index. IEEE/ASME Transactions on Mechatronics, 2014, 19( 2): 676– 683
https://doi.org/10.1109/TMECH.2013.2253789
89 L Mikelsons , T Bruckmann , M Hiller , D Schramm . A real-time capable force calculation algorithm for redundant tendon-based parallel manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008, 3869– 3874
https://doi.org/10.1109/ROBOT.2008.4543805
90 H D Taghirad , Y B Bedoustani . An analytic-iterative redundancy resolution scheme for cable-driven redundant parallel manipulators. IEEE Transactions on Robotics, 2011, 27( 6): 1137– 1143
https://doi.org/10.1109/TRO.2011.2163433
91 K S Yang , G L Yang , Y Wang , C Zhang , S L Chen . Stiffness-oriented cable tension distribution algorithm for a 3-DOF cable-driven variable-stiffness module. In: Proceedings of IEEE International Conference on Advanced Intelligent Mechatronics. Munich: IEEE, 2017, 454– 459
https://doi.org/10.1109/AIM.2017.8014059
92 K Azizian , P Cardou , B Moore . Classifying the boundaries of the wrench-closure workspace of planar parallel cable-driven mechanisms by visual inspection. Journal of Mechanisms and Robotics, 2012, 4( 2): 024503
https://doi.org/10.1115/1.4006520
93 T Bruckmann , A Pott , M Hiller . Calculating force distributions for redundantly actuated tendon-based Stewart platforms. In: Lennarčič J, Roth B, eds. Advances in Robot Kinematics. Dordrecht: Springer, 2006, 403– 412
https://doi.org/10.1007/978-1-4020-4941-5_44
94 M Gouttefarde , J Lamaury , C Reichert , T Bruckmann . A versatile tension distribution algorithm for n-DOF parallel robots driven by n+2 cables. IEEE Transactions on Robotics, 2015, 31( 6): 1444– 1457
https://doi.org/10.1109/TRO.2015.2495005
95 T Rasheed , P Long , D Marquez-Gamez , S Caro . Tension distribution algorithm for planar mobile cable-driven parallel robots. In: Gosselin C, Cardou P, Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Cham: Springer, 2018, 53 : 268– 279
https://doi.org/10.1007/978-3-319-61431-1_23
96 Z W Cui , X Q Tang , S H Hou , H N Sun . Non-iterative geometric method for cable-tension optimization of cable-driven parallel robots with 2 redundant cables. Mechatronics, 2019, 59 : 49– 60
https://doi.org/10.1016/j.mechatronics.2019.03.002
97 A B Alp , S K Agrawal . Cable suspended robots: design, planning and control. In: Proceedings of 2002 IEEE International Conference on Robotics and Automation. Washington: IEEE, 2002, 4 : 4275– 4280
https://doi.org/10.1109/ROBOT.2002.1014428
98 M Gouttefarde , C M Gosselin . Analysis of the wrench-closure workspace of planar parallel cable-driven mechanisms. IEEE Transactions on Robotics, 2006, 22( 3): 434– 445
https://doi.org/10.1109/TRO.2006.870638
99 C B Pham , S H Yeo , G L Yang , M S Kurbanhusen , I M Chen . Force-closure workspace analysis of cable-driven parallel mechanisms. Mechanism and Machine Theory, 2006, 41( 1): 53– 69
https://doi.org/10.1016/j.mechmachtheory.2005.04.003
100 I Ebert-Uphoff , P A Voglewede . On the connection between cable-driven robots, parallel manipulators and grasping. In: Proceedings of 2004 IEEE International Conference on Robotics & Automation. New Orleans: IEEE, 2004, 4521– 4526
https://doi.org/10.1109/ROBOT.2004.1302430
101 P Bosscher , A T Riechel , I Ebert-Uphoff . Wrench-feasible workspace generation for cable-driven robots. IEEE Transactions on Robotics, 2006, 22( 5): 890– 902
https://doi.org/10.1109/TRO.2006.878967
102 A T Riechel , I Ebert-Uphoff . Force-feasible workspace analysis for underconstrained, point-mass cable robots. In: Proceedings of 2004 IEEE International Conference on Robotics and Automation. New Orleans: IEEE, 2004, 4956– 4962
https://doi.org/10.1109/ROBOT.2004.1302503
103 R Verhoeven , M Hiller . Estimating the controllable workspace of tendon-based Stewart platforms. In: Lenarčič J, Stanišić M M, eds. Advances in Robot Kinematics. Dordrecht: Springer, 2000, 277– 284
https://doi.org/10.1007/978-94-011-4120-8_29
104 A Alikhani , S Behzadipour , S A Sadough Vanini , A Alasty . Workspace analysis of a three DOF cable-driven mechanism. Journal of Mechanisms and Robotics, 2009, 1( 4): 041005
https://doi.org/10.1115/1.3204255
105 G Barrette , C M Gosselin . Determination of the dynamic workspace of cable-driven planar parallel mechanisms. Journal of Mechanical Design, 2005, 127( 2): 242– 248
https://doi.org/10.1115/1.1830045
106 L Gagliardini , M Gouttefarde , S Caro . Determination of a dynamic feasible workspace for cable-driven parallel robots. In: Lenarčič J, Merlet J P, eds. Advances in Robot Kinematics 2016. Springer Proceedings in Advanced Robotics. Cham: Springer, 2018, 4 : 361– 370
https://doi.org/10.1007/978-3-319-56802-7_38
107 Z F Shao , F Z Peng , Z K Zhang , H S Li . Research on the dynamic trajectory of cable-suspended parallel robot considering the uniformity of cable tension. In: Proceedings of 2019 IEEE the 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Suzhou: IEEE, 2019, 795– 801
https://doi.org/10.1109/CYBER46603.2019.9066710
108 Y J Zhang , Y R Zhang , X W Dai , Y Yang . Workspace analysis of a novel 6-DOF cable-driven parallel robot. In: Proceedings of 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). Guilin: IEEE, 2009, 2403– 2408
https://doi.org/10.1109/ROBIO.2009.5420857
109 D Zlatanov , S Agrawal , C M Gosselin . Convex cones in screw spaces. Mechanism and Machine Theory, 2005, 40( 6): 710– 727
https://doi.org/10.1016/j.mechmachtheory.2004.11.004
110 X D Dong Q J Duan B Ma X C Duan. Workspace algorithm of cable-driven serial and parallel manipulators based on convex set theory. China Mechanical Engineering, 2016, 27(18): 2424– 2429, 2436 (in Chinese)
111 M Gouttefarde , D Daney , J P Merlet . Interval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robots. IEEE Transactions on Robotics, 2011, 27( 1): 1– 13
https://doi.org/10.1109/TRO.2010.2090064
112 G Abbasnejad , J Eden , D Lau . Generalized ray-based lattice generation and graph representation of wrench-closure workspace for arbitrary cable-driven robots. IEEE Transactions on Robotics, 2019, 35( 1): 147– 161
https://doi.org/10.1109/TRO.2018.2871395
113 X L Jiang , E Barnett , C Gosselin . Periodic trajectory planning beyond the static workspace for 6-DOF cable-suspended parallel robots. IEEE Transactions on Robotics, 2018, 34( 4): 1128– 1140
https://doi.org/10.1109/TRO.2018.2819668
114 X L Jiang , C Gosselin . Dynamic point-to-point trajectory planning of a three-DOF cable-suspended parallel robot. IEEE Transactions on Robotics, 2016, 32( 6): 1550– 1557
https://doi.org/10.1109/TRO.2016.2597315
115 P Dion-Gauvin , C Gosselin . Trajectory planning for the static to dynamic transition of point-mass cable-suspended parallel mechanisms. Mechanism and Machine Theory, 2017, 113 : 158– 178
https://doi.org/10.1016/j.mechmachtheory.2017.03.003
116 C Gosselin , P Ren , S Foucault . Dynamic trajectory planning of a two-DOF cable-suspended parallel robot. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation (ICRA). Saint Paul: IEEE, 2012, 1476– 1481
https://doi.org/10.1109/ICRA.2012.6224683
117 C Gosselin . Global planning of dynamically feasible trajectories for three-DOF spatial cable-suspended parallel robots. In: Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Berlin: Springer, 2013, 3– 22
https://doi.org/10.1007/978-3-642-31988-4_1
118 P A Voglewede , I Ebert-Uphoff . Application of the antipodal grasp theorem to cable driven robots. IEEE Transactions on Robotics, 2005, 21( 4): 713– 718
https://doi.org/10.1109/TRO.2005.844679
119 S Behzadipour , A Khajepour . Stiffness of cable-based parallel manipulators with application to stability analysis. Journal of Mechanical Design, 2006, 128( 1): 303– 310
https://doi.org/10.1115/1.2114890
120 D Surdilovic , J Radojicic , J Krüger . Geometric stiffness analysis of wire robots: a mechanical approach. In: Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Berlin, Heidelberg: Springer, 2013, 389– 404
https://doi.org/10.1007/978-3-642-31988-4_24
121 N Simaan , M Shoham . Geometric interpretation of the derivatives of parallel robots’ Jacobian matrix with application to stiffness control. Journal of Mechanical Design, 2003, 125( 1): 33– 42
https://doi.org/10.1115/1.1539514
122 Z W Cui , X Q Tang , S H Hou , H N Sun . Research on controllable stiffness of redundant cable-driven parallel robots. IEEE/ASME Transactions on Mechatronics, 2018, 23( 5): 2390– 2401
https://doi.org/10.1109/TMECH.2018.2864307
123 S H Yeo , G Yang , W B Lim . Design and analysis of cable-driven manipulators with variable stiffness. Mechanism and Machine Theory, 2013, 69 : 230– 244
https://doi.org/10.1016/j.mechmachtheory.2013.06.005
124 H Jamshidifar , A Khajepour , B Fidan , M Rushton . Kinematically-constrained redundant cable-driven parallel robots: modeling, redundancy analysis, and stiffness optimization. IEEE/ASME Transactions on Mechatronics, 2017, 22( 2): 921– 930
https://doi.org/10.1109/TMECH.2016.2639053
125 J Bolboli , M A Khosravi , F Abdollahi . Stiffness feasible workspace of cable-driven parallel robots with application to optimal design of a planar cable robot. Robotics and Autonomous Systems, 2019, 114 : 19– 28
https://doi.org/10.1016/j.robot.2019.01.012
126 Z W Cui , X Q Tang , S H Hou , H N Sun , D J Wang . Calculation and analysis of constant stiffness space for redundant cable-driven parallel robots. IEEE Access, 2019, 7 : 75407– 75419
https://doi.org/10.1109/ACCESS.2019.2921839
127 A Alamdari , R Haghighi , V Krovi . Stiffness modulation in an elastic articulated-cable leg-orthosis emulator: theory and experiment. IEEE Transactions on Robotics, 2018, 34( 5): 1266– 1279
https://doi.org/10.1109/TRO.2018.2830356
128 K S Yang , G L Yang , S L Chen , Y Wang , C Zhang , Z J Fang , T J Zheng , C C Wang . Study on stiffness-oriented cable tension distribution for a symmetrical cable-driven mechanism. Symmetry, 2019, 11( 9): 1158
https://doi.org/10.3390/sym11091158
129 J L Du , H Bao , C Z Cui . Stiffness and dexterous performances optimization of large workspace cable-driven parallel manipulators. Advanced Robotics, 2014, 28( 3): 187– 196
https://doi.org/10.1080/01691864.2013.865542
130 H Yuan , E Courteille , D Deblaise . Static and dynamic stiffness analyses of cable-driven parallel robots with non-negligible cable mass and elasticity. Mechanism and Machine Theory, 2015, 85 : 64– 81
https://doi.org/10.1016/j.mechmachtheory.2014.10.010
131 M Arsenault . Workspace and stiffness analysis of a three-degree-of-freedom spatial cable-suspended parallel mechanism while considering cable mass. Mechanism and Machine Theory, 2013, 66 : 1– 13
https://doi.org/10.1016/j.mechmachtheory.2013.03.003
132 K Azizian , P Cardou . The dimensional synthesis of spatial cable-driven parallel mechanisms. Journal of Mechanisms and Robotics, 2013, 5( 4): 044502
https://doi.org/10.1115/1.4025173
133 G Abbasnejad , J Yoon , H Lee . Optimum kinematic design of a planar cable-driven parallel robot with wrench-closure gait trajectory. Mechanism and Machine Theory, 2016, 99 : 1– 18
https://doi.org/10.1016/j.mechmachtheory.2015.12.009
134 D Song , L X Zhang , F Xue . Configuration optimization and a tension distribution algorithm for cable-driven parallel robots. IEEE Access, 2018, 6 : 33928– 33940
https://doi.org/10.1109/ACCESS.2018.2841988
135 B Zi , G C Yin , D Zhang . Design and optimization of a hybrid-driven waist rehabilitation robot. Sensors, 2016, 16( 12): 2121
https://doi.org/10.3390/s16122121
136 L Xu , Y Cao , J Chen , S Jiang . Design and workspace optimization of a 6/6 cable-suspended parallel robot. In: Proceedings of 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). Taiyuan: IEEE, 2010, 10 : 610– 614
https://doi.org/10.1109/ICCASM.2010.5622640
137 E Hernandez , S I Valdez , G Carbone , M Ceccarelli . Design optimization of a cable-driven parallel robot in upper arm training-rehabilitation processes. In: Carvalho J C M, Martins D, Simoni R, Simas H, eds. Multibody Mechatronic Systems. Cham: Springer, 2018, 413– 423
https://doi.org/10.1007/978-3-319-67567-1_39
138 G L Yang , C B Pham , S H Yeo . Workspace performance optimization of fully restrained cable-driven parallel manipulators. In: Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing: IEEE, 2006, 85– 90
https://doi.org/10.1109/IROS.2006.281747
139 Q J Duan , Q H Li , F Li , X C Duan . Analysis of the workspace of the cable-spring mechanism. Journal of Mechanical Engineering, 2016, 52( 15): 15– 20
https://doi.org/10.3901/JME.2016.15.015
140 X Tang , L Tang , J Wang , D Sun . Workspace quality analysis and application for a completely restrained 3-DOF planar cable-driven parallel manipulator. Journal of Mechanical Science and Technology, 2013, 27( 8): 2391– 2399
https://doi.org/10.1007/s12206-013-0624-7
141 M Newman , A Zygielbaum , B Terry . Static analysis and dimensional optimization of a cable-driven parallel robot. In: Gosselin C, Cardou P, Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Cham: Springer, 2018, 152– 166
https://doi.org/10.1007/978-3-319-61431-1_14
142 J Hanafie , L Nurahmi , S Caro , B Pramujati . Design optimization of spatial four cables suspended cable driven parallel robot for rapid life-scan. AIP Conference Proceedings, 2018, 1983( 1): 060007
https://doi.org/10.1063/1.5046299
143 M A Laribi , G Carbone , S Zeghloul . On the optimal design of cable-driven parallel robot with a prescribed workspace for upper limb rehabilitation tasks. Journal of Bionics Engineering, 2019, 16( 3): 503– 513
https://doi.org/10.1007/s42235-019-0041-4
144 F Ennaiem , A Chaker , J S S Arévalo , M A Laribi , S Bennour , A Mlika , L Romdhane , S Zeghloul . Optimal design of a rehabilitation four cable-driven parallel robot for daily living activities. In: Zeghloul S, Laribi M A, Sandoval Arevalo J S, eds. Advances in Service and Industrial Robotics. Cham: Springer, 2020, 3– 12
https://doi.org/10.1007/978-3-030-48989-2_1
145 J T Bryson , X Jin , S K Agrawal . Optimal design of cable-driven manipulators using particle swarm optimization. Journal of Mechanisms and Robotics, 2016, 8( 4): 041003
https://doi.org/10.1115/1.4032103
146 Z F Shao , X Q Tang , W M Yi . Optimal design of a 3-DOF cable-driven upper arm exoskeleton. Advances in Mechanical Engineering, 2014, 6 : 157096
https://doi.org/10.1155/2014/157096
147 R Yao , X Q Tang , J S Wang , P Huang . Dimensional optimization design of the four-cable-driven parallel manipulator in fast. IEEE/ASME Transactions on Mechatronics, 2010, 15( 6): 932– 941
https://doi.org/10.1109/TMECH.2009.2035922
148 D Gueners , H Chanal , B C Bouzgarrou . Stiffness optimization of a cable driven parallel robot for additive manufacturing. In: Proceedings of 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris: IEEE, 2020, 843– 849
https://doi.org/10.1109/ICRA40945.2020.9197368
149 S Torres-Mendez , A Khajepour . Design optimization of a warehousing cable-based robot. In: Proceedings of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Buffalo: ASME, 2014, V05AT08A091
https://doi.org/10.1115/DETC2014-34672
150 Y M Li , Q S Xu . GA-based multi-objective optimal design of a planar 3-DOF cable-driven parallel manipulator. In: Proceedings of 2006 IEEE International Conference on Robotics and Biomimetics. Kunming: IEEE, 2006, 1360– 1365
https://doi.org/10.1109/ROBIO.2006.340127
151 Z W Cui , X Q Tang , S H Hou , H N Sun , D J Wang . Optimization design of redundant cable driven parallel robots based on constant stiffness space. In: Proceedings of 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). Dali: IEEE, 2019, 1041– 1046
https://doi.org/10.1109/ROBIO49542.2019.8961748
152 M Gouttefarde , J F Collard , N Riehl , C Baradat . Geometry selection of a redundantly actuated cable-suspended parallel robot. IEEE Transactions on Robotics, 2015, 31( 2): 501– 510
https://doi.org/10.1109/TRO.2015.2400253
153 P K Jamwal , S Hussain , S Q Xie . Three-stage design analysis and multicriteria optimization of a parallel ankle rehabilitation robot using genetic algorithm. IEEE Transactions on Automation Science and Engineering, 2015, 12( 4): 1433– 1446
https://doi.org/10.1109/TASE.2014.2331241
154 Z K Zhang , Z F Shao , F Z Peng , H S Li , L P Wang . Workspace analysis and optimal design of a translational cable-driven parallel robot with passive springs. Journal of Mechanisms and Robotics, 2020, 12( 5): 051005
https://doi.org/10.1115/1.4046030
155 L X Zhang , J S Wang , L P Wang . Simplification of the rigid body dynamic model for a 6-UPS parallel kinematic machine under the accelerated motion and the decelerated motion. Journal of Mechanical Engineering, 2003, 39( 11): 117– 122
https://doi.org/10.3901/JME.2003.11.117
156 S Staicu . Dynamics analysis of the star parallel manipulator. Robotics and Autonomous Systems, 2009, 57( 11): 1057– 1064
https://doi.org/10.1016/j.robot.2009.07.005
157 H Abdellatif , B Heimann . Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the Lagrangian formalism. Mechanism and Machine Theory, 2009, 44( 1): 192– 207
https://doi.org/10.1016/j.mechmachtheory.2008.02.003
158 C F Yang , Q T Huang , J F He , H Z Jiang , J W Han . Model-based control for 6-DOF parallel manipulator. In: Proceedings of 2009 International Asia Conference on Informatics in Control, Automation and Robotics. Bangkok: IEEE, 2009, 81– 84
https://doi.org/10.1109/CAR.2009.72
159 X M Diao , O Ma . Vibration analysis of cable-driven parallel manipulators. Multibody System Dynamics, 2009, 21( 4): 347– 360
https://doi.org/10.1007/s11044-008-9144-0
160 M A Khosravi , H D Taghirad . Dynamic analysis and control of cable driven robots with elastic cables. Transactions of the Canadian Society for Mechanical Engineering, 2011, 35( 4): 543– 557
https://doi.org/10.1139/tcsme-2011-0033
161 P Miermeister , A Pott , A Verl . Dynamic modeling and hardware-in-the-loop simulation for the cable-driven parallel robot IPAnema. In: Proceedings of ISR 2010 (the 41st International Symposium on Robotics) and ROBOTIK 2010 (the 6th German Conference on Robotics). Munich: IEEE, 2010, 1– 8
162 J L Piao X J Jin J Jung E Choi J O Park C S Kim. Open-loop position control of a polymer cable–driven parallel robot via a viscoelastic cable model for high payload workspaces. Advances in Mechanical Engineering, 2017, 9(12): 1687814017737199
163 J L Piao , X J Jin , E Choi , J O Park , C S Kim , J Jung . A polymer cable creep modeling for a cable-driven parallel robot in a heavy payload application. In: Gosselin C, Cardou P, Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Cham: Springer, 2018, 62– 72
https://doi.org/10.1007/978-3-319-61431-1_6
164 Z F Shao , X Q Tang , L P Wang , X Chen . Dynamic modeling and wind vibration control of the feed support system in FAST. Nonlinear Dynamics, 2012, 67( 2): 965– 985
https://doi.org/10.1007/s11071-011-0040-4
165 P Miermeister , W Kraus , T Lan , A Pott . An elastic cable model for cable-driven parallel robots including hysteresis effects. In: Pott A, Bruckmann T, eds. Cable-Driven Parallel Robots. Cham: Springer, 2015, 32 : 17– 28
https://doi.org/10.1007/978-3-319-09489-2_2
166 S H Choi , K S Park . Integrated and nonlinear dynamic model of a polymer cable for low-speed cable-driven parallel robots. Microsystem Technologies, 2018, 24( 11): 4677– 4687
https://doi.org/10.1007/s00542-018-3820-7
167 E Ottaviano , G Castelli . A study on the effects of cable mass and elasticity in cable-based parallel manipulators. In: Parenti Castelli V, Schiehlen W, eds. ROMANSY 18 Robot Design, Dynamics and Control. Vienna: Springer, 2010, 524 : 149– 156
https://doi.org/10.1007/978-3-7091-0277-0_17
168 J L Du , H Bao , X C Duan , C Z Cui . Jacobian analysis of a long-span cable-driven manipulator and its application to forward solution. Mechanism and Machine Theory, 2010, 45( 9): 1227– 1238
https://doi.org/10.1016/j.mechmachtheory.2010.05.005
169 J L Du , C Z Cui , H Bao , Y Y Qiu . Dynamic analysis of cable-driven parallel manipulators using a variable length finite element. Journal of Computational and Nonlinear Dynamics, 2015, 10( 1): 011013
https://doi.org/10.1115/1.4026570
170 J L Du , S K Agrawal . Dynamic modeling of cable-driven parallel manipulators with distributed mass flexible cables. Journal of Vibration and Acoustics, 2015, 137( 2): 021020
https://doi.org/10.1115/1.4029486
171 V Ferravante , E Riva , M Taghavi , F Braghin , T Bock . Dynamic analysis of high precision construction cable-driven parallel robots. Mechanism and Machine Theory, 2019, 135 : 54– 64
https://doi.org/10.1016/j.mechmachtheory.2019.01.023
172 S Nguyen-Van , K W Gwak , D H Nguyen , S G Lee , B H Kang . A novel modified analytical method and finite element method for vibration analysis of cable-driven parallel robots. Journal of Mechanical Science and Technology, 2020, 34( 9): 3575– 3586
https://doi.org/10.1007/s12206-020-0809-9
173 P Tempel , A Schmidt , B Haasdonk , A Pott . Application of the rigid finite element method to the simulation of cable-driven parallel robots. In: Zeghloul S, Romdhane L, Laribi M, eds. Computational Kinematics. Cham: Springer, 2018, 50 : 198– 205
https://doi.org/10.1007/978-3-319-60867-9_23
174 Z H Liu , X Q Tang , Z F Shao , L P Wang , L W Tang . Research on longitudinal vibration characteristic of the six-cable-driven parallel manipulator in FAST. Advances in Mechanical Engineering, 2013, 5 : 547416
https://doi.org/10.1155/2013/547416
175 J L Du , X C Duan , Y Y Qiu . Dynamic analysis and vibration attenuation of cable-driven parallel manipulators for large workspace applications. Advances in Mechanical Engineering, 2013, 5 : 361585
https://doi.org/10.1155/2013/361585
176 H D Do , K S Park . Analysis of effective vibration frequency of cable-driven parallel robot using mode tracking and quasi-static method. Microsystem Technologies, 2017, 23( 7): 2577– 2585
https://doi.org/10.1007/s00542-016-3034-9
177 H Yuan , E Courteille , M Gouttefarde , P E Hervé . Vibration analysis of cable-driven parallel robots based on the dynamic stiffness matrix method. Journal of Sound and Vibration, 2017, 394 : 527– 544
https://doi.org/10.1016/j.jsv.2017.02.003
178 H Bao B Y Duan G D Chen. Position control of 6-DOF cable-suspended parallel robotic with uncertain input. Journal of Mechanical Engineering, 2007, 43(7): 128– 132 (in Chinese)
179 Y J Lu , W B Zhu , G X Ren . Feedback control of a cable-driven Gough–Stewart platform. IEEE Transactions on Robotics, 2006, 22( 1): 198– 202
https://doi.org/10.1109/TRO.2005.861459
180 R Chellal , L Cuvillon , E Laroche . A kinematic vision-based position control of a 6-DOF cable-driven parallel robot. In: Pott A, Bruckmann T, eds. Cable-Driven Parallel Robots. Cham: Springer, 2015, 32 : 213– 225
https://doi.org/10.1007/978-3-319-09489-2_15
181 Z Zake , F Chaumette , N Pedemonte , S Caro . Vision-based control and stability analysis of a cable-driven parallel robot. IEEE Robotics and Automation Letters, 2019, 4( 2): 1029– 1036
https://doi.org/10.1109/LRA.2019.2893611
182 W W Shang , B Y Zhang , B Zhang , F Zhang , S Cong . Synchronization control in the cable space for cable-driven parallel robots. IEEE Transactions on Industrial Electronics, 2019, 66( 6): 4544– 4554
https://doi.org/10.1109/TIE.2018.2864512
183 X C Duan Y Y Qiu B Y Duan G D Chen H Bao J W Mi. Adaptive interactive PID supervisory control of the macro-micro parallel manipulator. Journal of Mechanical Engineering, 2010, 46(1): 10– 17 (in Chinese)
184 V Gordievsky. Design and control of a robotic cable-suspended camera system for operation in 3-D industrial environment. Dissertation for the Doctoral Degree. Cambridge: Massachusetts Institute of Technology, 2008
185 S Baklouti , E Courteille , P Lemoine , S Caro . Vibration reduction of cable-driven parallel robots through elasto-dynamic model-based control. Mechanism and Machine Theory, 2019, 139 : 329– 345
https://doi.org/10.1016/j.mechmachtheory.2019.05.001
186 S Abdelaziz , L Barbé , P Renaud , Mathelin M de , B Bayle . Control of cable-driven manipulators in the presence of friction. Mechanism and Machine Theory, 2017, 107 : 139– 147
https://doi.org/10.1016/j.mechmachtheory.2016.09.014
187 F Najafi , M Bakhshizadeh . Development a fuzzy PID controller for a parallel cable robot with flexible cables. In: Proceedings of 2016 the 4th International Conference on Robotics and Mechatronics (ICROM). Tehran: IEEE, 2016, 90– 97
https://doi.org/10.1109/ICRoM.2016.7886823
188 M A Khosravi , H D Taghirad . Robust PID control of fully-constrained cable driven parallel robots. Mechatronics, 2014, 24( 2): 87– 97
https://doi.org/10.1016/j.mechatronics.2013.12.001
189 B Zi , H H Sun , D Zhang . Design, analysis and control of a winding hybrid-driven cable parallel manipulator. Robotics and Computer-Integrated Manufacturing, 2017, 48 : 196– 208
https://doi.org/10.1016/j.rcim.2017.04.002
190 R Babaghasabha , M A Khosravi , H D Taghirad . Adaptive robust control of fully-constrained cable driven parallel robots. Mechatronics, 2015, 25 : 27– 36
https://doi.org/10.1016/j.mechatronics.2014.11.005
191 R Babaghasabha , M A Khosravi , H D Taghirad . Adaptive robust control of fully constrained cable robots: singular perturbation approach. Nonlinear Dynamics, 2016, 85( 1): 607– 620
https://doi.org/10.1007/s11071-016-2710-8
192 F Tajdari , M Kabganian , N F Rad , E Khodabakhshi . Robust control of a 3-DOF parallel cable robot using an adaptive neuro-fuzzy inference system. In: Proceedings of 2017 Artificial Intelligence and Robotics (IRANOPEN). Qazvin: IEEE, 2017, 97– 101
https://doi.org/10.1109/RIOS.2017.7956450
193 H Jabbari Asl , F Janabi-Sharifi . Adaptive neural network control of cable-driven parallel robots with input saturation. Engineering Applications of Artificial Intelligence, 2017, 65 : 252– 260
https://doi.org/10.1016/j.engappai.2017.05.011
194 K Yu , L F Lee , C P Tang , V N Krovi . Enhanced trajectory tracking control with active lower bounded stiffness control for cable robot. In: Proceedings of 2010 IEEE International Conference on Robotics and Automation. Anchorage: IEEE, 2010, 669– 674
https://doi.org/10.1109/ROBOT.2010.5509458
195 M Zarei , A Aflakian , A Kalhor , M T Masouleh . Oscillation damping of nonlinear control systems based on the phase trajectory length concept: an experimental case study on a cable-driven parallel robot. Mechanism and Machine Theory, 2018, 126 : 377– 396
https://doi.org/10.1016/j.mechmachtheory.2018.04.007
196 H Jamshidifar , S Khosravani , B Fidan , A Khajepour . Vibration decoupled modeling and robust control of redundant cable-driven parallel robots. IEEE/ASME Transactions on Mechatronics, 2018, 23( 2): 690– 701
https://doi.org/10.1109/TMECH.2018.2793578
197 A Nishitani , Y Inoue . Overview of the application of active/semiactive control to building structures in Japan. Earthquake Engineering & Structural Dynamics, 2001, 30( 11): 1565– 1574
https://doi.org/10.1002/eqe.81
198 M A Torres , S Dubowsky , A C Pisoni . Vibration control of deployment structures’ long-reach space manipulators: the P-PED method. In: Proceedings of IEEE International Conference on Robotics and Automation. Minneapolis: IEEE, 1996, 2498– 2504
https://doi.org/10.1109/ROBOT.1996.506538
199 D N Nenchev , K Yoshida , P Vichitkulsawat , A Konno , M Uchiyama . Experiments on reaction null-space based decoupled control of a flexible structure mounted manipulator system. In: Proceedings of International Conference on Robotics and Automation. Albuquerque: IEEE, 1997, 2528– 2534
https://doi.org/10.1109/ROBOT.1997.619341
200 T W Yang , W L Xu , S K Tso . Dynamic modeling based on real-time deflection measurement and compensation control for flexible multi-link manipulators. Dynamics and Control, 2001, 11( 1): 5– 24
https://doi.org/10.1023/A:1017954615442
201 E Staffetti , H Bruyninckx , J De Schutter . On the invariance of manipulability indices. In: Lenarčič J, Thomas F, eds. Advances in Robot Kinematics. Dordrecht: Springer, 2002, 57– 66
https://doi.org/10.1007/978-94-017-0657-5_7
202 X Q Tang , X M Chai , L W Tang , Z F Shao . Accuracy synthesis of a multi-level hybrid positioning mechanism for the feed support system in FAST. Robotics and Computer-Integrated Manufacturing, 2014, 30( 5): 565– 575
https://doi.org/10.1016/j.rcim.2014.03.002
203 M Rushton , A Khajepour . Transverse vibration control in planar cable-driven robotic manipulators. In: Gosselin C, Cardou P, Bruckmann T, Pott A, eds. Cable-Driven Parallel Robots. Cham: Springer, 2018, 53 : 243– 253
https://doi.org/10.1007/978-3-319-61431-1_21
204 R de Rijk , M Rushton , A Khajepour . Out-of-plane vibration control of a planar cable-driven parallel robot. IEEE/ASME Transactions on Mechatronics, 2018, 23( 4): 1684– 1692
https://doi.org/10.1109/TMECH.2018.2847708
205 M Rushton , H Jamshidifar , A Khajepour . Multiaxis reaction system (MARS) for vibration control of planar cable-driven parallel robots. IEEE Transactions on Robotics, 2019, 35( 4): 1039– 1046
https://doi.org/10.1109/TRO.2019.2906475
206 M H Korayem , M Yousefzadeh , S Manteghi . Tracking control and vibration reduction of flexible cable-suspended parallel robots using a robust input shaper. Scientia Iranica, 2018, 25( 1): 230– 252
https://doi.org/10.24200/sci.2017.4500
207 F Montgomery , J Vaughan . Suppression of cable suspended parallel manipulator vibration utilizing input shaping. In: Proceedings of 2017 IEEE Conference on Control Technology and Applications (CCTA). Maui: IEEE, 2017, 1480– 1485
https://doi.org/10.1109/CCTA.2017.8062667
208 Liebherr. High-tensile fibre rope for tower cranes. Available from Liebherr website, 2021
209 D Lau , J Eden , Y Tan , D Oetomo . CASPR: a comprehensive cable-robot analysis and simulation platform for the research of cable-driven parallel robots. In: Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon: IEEE, 2016, 3004– 3011
https://doi.org/10.1109/IROS.2016.7759465
210 A Pott. WireX: an open source initiative scientific software for analysis and design of cable-driven parallel robots. In: Proceedings of Fourth International Conference on Cable-driven Parallel Robots. Krakow, 2019
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed