Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2022, Vol. 17 Issue (4): 56   https://doi.org/10.1007/s11465-022-0712-4
  本期目录
Piezoelectric pump with flexible venous valves for active cell transmission
Jun HUANG1, Jiaming LIU1, Kai LI2, Lei ZHANG3, Quan ZHANG4(), Yuan WANG5
1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China
2. Research and Development Center of New Combined Power, Shaanxi Province Aerospace and Astronautics Propulsion Research Institute Co., Ltd., Xi’an 710076, China
3. School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
4. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
5. College of Communication Engineering, Army Engineering University of PLA, Nanjing 210007, China
 全文: PDF(6313 KB)   HTML
Abstract

The development of organ-on-a-chip systems demands high requirements for adequate micro-pump performance, which needs excellent performance and effective transport of active cells. In this study, we designed a piezoelectric pump with a flexible venous valve inspired by that of humans. Performance test of the proposed pump with deionized water as the transmission medium shows a maximum output flow rate of 14.95 mL/min when the input voltage is 100 V, and the pump can transfer aqueous solutions of glycerol with a viscosity of 10.8 mPa·s. Cell survival rate can reach 97.22% with a yeast cell culture solution as the transmission medium. A computational model of the electric-solid-liquid multi-physical field coupling of the piezoelectric pump with a flexible venous valve is established, and simulation results are consistent with experimental results. The proposed pump can help to construct the circulating organ-on-a-chip system, and the simple structure and portable application can enrich the design of microfluidic systems. In addition, the multi-physical field coupling computational model established for the proposed piezoelectric pump can provide an in-depth study of the characteristics of the flow field, facilitating the optimal design of the micro-pump and providing a reference for the further study of active cell transport in organ-on-a-chip systems.

Key wordsvenous valve    flexible venous valve    cell transmission    organ-on-a-chip system    piezoelectric device
收稿日期: 2021-12-25      出版日期: 2022-12-25
Corresponding Author(s): Quan ZHANG   
 引用本文:   
. [J]. Frontiers of Mechanical Engineering, 2022, 17(4): 56.
Jun HUANG, Jiaming LIU, Kai LI, Lei ZHANG, Quan ZHANG, Yuan WANG. Piezoelectric pump with flexible venous valves for active cell transmission. Front. Mech. Eng., 2022, 17(4): 56.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-022-0712-4
https://academic.hep.com.cn/fme/CN/Y2022/V17/I4/56
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Material Young’s modulus/GPa Piezoelectric constant/(C?m−2) Permittivity/(F?m−1) Poisson’s ratio Density/(kg?m?3)
Beryllium bronze 128 ? ? 0.35 8600
PZT-5A [ 121 75.4 75.20 00 75.412175.200075.2 75.2 111 0000 0021.100 000021.100 000022.6] [ 00 5.4005.40015.80 12.3 012.300 000] [ 8.107000 8.107 0007.346]×109 ? 7750
Tab.1  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Ref. Driver Voltage/V Frequency/Hz Valve type/materials Maximum flow rate/(mL?min−1) Maximum back pressure
Ma et al. [7] PZTs 150 100 Valveless 0.006 2 kPa
Chen et al. [22] PZT 80 24 Valveless 0.960 ?
Kan et al. [30] PZT 50 3172 Cantilever-valve/Beryllium bronze 3.500 27 kPa
Ma et al. [32] PZT ±50 20 Bridge-type valve/PDMS 6.210 200 mm H2O
Kant et al. [35] PZT Direct current 100 128 Valveless 0.497 500 mm H2O
This study PZT 100 35 Venous valve/rubber-like 14.950 540 Pa
Tab.2  
1 D Y Park, J Lee, J J Chung, Y Jung, S H Kim. Integrating organs-on-chips: multiplexing, scaling, vascularization, and innervation. Trends in Biotechnology, 2020, 38(1): 99–112
https://doi.org/10.1016/j.tibtech.2019.06.006
2 D Huh, H J Kim, J P Fraser, D E Shea, M Khan, A Bahinski, G A Hamilton, D E Ingber. Microfabrication of human organs-on-chips. Nature Protocols, 2013, 8(11): 2135–2157
https://doi.org/10.1038/nprot.2013.137
3 Š Selimović, M R Dokmeci, A Khademhosseini. Organs-on-a-chip for drug discovery. Current Opinion in Pharmacology, 2013, 13(5): 829–833
https://doi.org/10.1016/j.coph.2013.06.005
4 J Kieninger, A Weltin, H Flamm, G A Urban. Microsensor systems for cell metabolism—from 2D culture to organ-on-chip. Lab on a Chip, 2018, 18(9): 1274–1291
https://doi.org/10.1039/C7LC00942A
5 N S Bhise, J Ribas, V Manoharan, S H Zhang, A Polini, S Massa, M R Dokmeci, A Khademhosseini. Organ-on-a-chip platforms for studying drug delivery systems. Journal of Controlled Release, 2014, 190: 82–93
https://doi.org/10.1016/j.jconrel.2014.05.004
6 Z Y Li, Y Q Guo, Y Yu, C Xu, H Xu, J H Qin. Assessment of metabolism-dependent drug efficacy and toxicity on a multilayer organs-on-a-chip. Integrative Biology, 2016, 8(10): 1022–1029
https://doi.org/10.1039/C6IB00162A
7 T Ma, S X Sun, B Q Li, J R Chu. Piezoelectric peristaltic micropump integrated on a microfluidic chip. Sensors and Actuators A: Physical, 2019, 292: 90–96
https://doi.org/10.1016/j.sna.2019.04.005
8 K Laszczyk, M Krysztof. Electron beam source for the miniaturized electron microscope on-chip. Vacuum, 2021, 189: 110236
https://doi.org/10.1016/j.vacuum.2021.110236
9 S L Mi, H T Pu, S Y Xia, W Sun. A minimized valveless electromagnetic micropump for microfluidic actuation on organ chips. Sensors and Actuators A: Physical, 2020, 301: 111704
https://doi.org/10.1016/j.sna.2019.111704
10 R K Avvari. A novel two-indenter based micro-pump for lab-on-a-chip application: modeling and characterizing flows for a non-Newtonian fluid. Meccanica, 2021, 56(3): 569–583
https://doi.org/10.1007/s11012-020-01303-1
11 Y N Wang, L M Fu. Micropumps and biomedical applications—a review. Microelectronic Engineering, 2018, 195: 121–138
https://doi.org/10.1016/j.mee.2018.04.008
12 M Al-Rubeai, A N Emery, S Chalder, M H Goldman. A flow cytometric study of hydrodynamic damage to mammalian cells. Journal of Biotechnology, 1993, 31(2): 161–177
https://doi.org/10.1016/0168-1656(93)90158-J
13 S J Müller, F Weigl, C Bezold, C Bächer, K Albrecht, S Gekle. A hyperelastic model for simulating cells in flow. Biomechanics and Modeling in Mechanobiology, 2021, 20(2): 509–520
https://doi.org/10.1007/s10237-020-01397-2
14 Z Zhang, J de Graaf, S Faez. Regulating the aggregation of colloidal particles in an electro-osmotic micropump. Soft Matter, 2020, 16(47): 10707–10715
https://doi.org/10.1039/D0SM01084G
15 Y Okamoto, H Ryoson, K Fujimoto, T Ohba, Y Mita. On-chip CMOS-MEMS-based electroosmotic flow micropump integrated with high-voltage generator. Journal of Microelectromechanical Systems, 2020, 29(1): 86–94
https://doi.org/10.1109/JMEMS.2019.2953290
16 N Gallah, N Habbachi, K Besbes. Design and modelling of droplet based microfluidic system enabled by electroosmotic micropump. Microsystem Technologies, 2017, 23(12): 5781–5787
https://doi.org/10.1007/s00542-017-3414-9
17 V Nico, E Dalton. Modelling and experimental characterisation of a magnetic shuttle pump for microfluidic applications. Sensors and Actuators A: Physical, 2021, 331: 112910
https://doi.org/10.1016/j.sna.2021.112910
18 Y F Huang, C H Tsou, C J Hsu, Y C Lin, T Ono, Y C Tsai. Metallic glass thin film integrated with flexible membrane for electromagnetic micropump application. Japanese Journal of Applied Physics, 2020, 59(SI): SIIK03
https://doi.org/10.35848/1347-4065/ab82a7
19 F Forouzandeh, A Arevalo, A Alfadhel, D A Borkholder. A review of peristaltic micropumps. Sensors and Actuators A: Physical, 2021, 326: 112602
https://doi.org/10.1016/j.sna.2021.112602
20 C W Huang, S B Huang, G B Lee. Pneumatic micropumps with serially connected actuation chambers. Journal of Micromechanics and Microengineering, 2006, 16(11): 2265–2272
https://doi.org/10.1088/0960-1317/16/11/003
21 H Y Li, J K Liu, K Li, Y X Liu. A review of recent studies on piezoelectric pumps and their applications. Mechanical Systems and Signal Processing, 2021, 151: 107393
https://doi.org/10.1016/j.ymssp.2020.107393
22 S Chen, H D Liu, J J Ji, J W Kan, Y H Jiang, Z H Zhang. An indirect drug delivery device driven by piezoelectric pump. Smart Materials and Structures, 2020, 29(7): 075030
https://doi.org/10.1088/1361-665X/ab8c23
23 J Huang, K Li, G C Chen, J Q Gong, Q Zhang, Y Wang. Design and experimental verification of variable-structure vortex tubes for valveless piezoelectric pump translating high-viscosity liquid based on the entropy generation. Sensors and Actuators A: Physical, 2021, 331: 112973
https://doi.org/10.1016/j.sna.2021.112973
24 J J Ji, C P Qian, S Chen, C Y Wang, J W Kan, Z H Zhang. A serial piezoelectric gas pump with variable chamber height. Sensors and Actuators A: Physical, 2021, 331: 112912
https://doi.org/10.1016/j.sna.2021.112912
25 P W Yen, S C Lin, Y C Huang, Y J Huang, Y C Tung, S S Lu, C T Lin. A low-power CMOS microfluidic pump based on travelling-wave electroosmosis for diluted serum pumping. Scientific Reports, 2019, 9(1): 14794
https://doi.org/10.1038/s41598-019-51464-7
26 J R Coppeta, M J Mescher, B C Isenberg, A J Spencer, E S Kim, A R Lever, T J Mulhern, R Prantil-Baun, J C Comolli, J T Borenstein. A portable and reconfigurable multi-organ platform for drug development with onboard microfluidic flow control. Lab on a Chip, 2017, 17(1): 134–144
https://doi.org/10.1039/C6LC01236A
27 I Wagner, E M Materne, S Brincker, U Süßbier, C Frädrich, M Busek, F Sonntag, D A Sakharov, E V Trushkin, A G Tonevitsky, R Lauster, U Marx. A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab on a Chip, 2013, 13(18): 3538–3547
https://doi.org/10.1039/c3lc50234a
28 B Ataç, I Wagner, R Horland, R Lauster, U Marx, A G Tonevitsky, R P Azar, G Lindner. Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion. Lab on a Chip, 2013, 13(18): 3555–3561
https://doi.org/10.1039/c3lc50227a
29 I Maschmeyer, A K Lorenz, K Schimek, T Hasenberg, A R Ramme, J Hübner, M Lindner, C Drewell, S Bauer, A Thomas, N S Sambo, F Sonntag, R Lauster, U Marx. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab on a Chip, 2015, 15(12): 2688–2699
https://doi.org/10.1039/C5LC00392J
30 J W Kan, Z G Yang, T J Peng, G M Cheng, B D Wu. Design and test of a high-performance piezoelectric micropump for drug delivery. Sensors and Actuators A: Physical, 2005, 121(1): 156–161
https://doi.org/10.1016/j.sna.2004.12.002
31 Q B Bao, J H Zhang, M Tang, Z Huang, L Y Lai, J Huang, C Y Wu. A novel PZT pump with built-in compliant structures. Sensors, 2019, 19(6): 1301
https://doi.org/10.3390/s19061301
32 H K Ma, W F Luo, J Y Lin. Development of a piezoelectric micropump with novel separable design for medical applications. Sensors and Actuators A: Physical, 2015, 236: 57–66
https://doi.org/10.1016/j.sna.2015.10.010
33 W Q Huang, L Y Lai, Z L Chen, X S Chen, Z Huang, J T Dai, F Zhang, J H Zhang. Research on a piezoelectric pump with flexible venous valves. Applied Sciences, 2021, 11(7): 2909
https://doi.org/10.3390/app11072909
34 H K Ma, R H Chen, Y H Hsu. Development of a piezoelectric-driven miniature pump for biomedical applications. Sensors and Actuators A: Physical, 2015, 234: 23–33
https://doi.org/10.1016/j.sna.2015.08.003
35 R Kant, D Singh, S Bhattacharya. Digitally controlled portable micropump for transport of live micro-organisms. Sensors and Actuators A: Physical, 2017, 265: 138–151
https://doi.org/10.1016/j.sna.2017.05.016
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed