Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2023, Vol. 18 Issue (2): 33   https://doi.org/10.1007/s11465-023-0749-z
  本期目录
Review on flexible perovskite photodetector: processing and applications
Xuning ZHANG1, Xingyue LIU2, Yifan HUANG1, Bo SUN3, Zhiyong LIU1,4, Guanglan LIAO1,4(), Tielin SHI1()
1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
2. School of Mechanical Engineering and Electronic Information, China University of Geoscience (Wuhan), Wuhan 430074, China
3. School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
4. Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518100, China
 全文: PDF(11437 KB)   HTML
Abstract

Next-generation optoelectronics should possess lightweight and flexible characteristics, thus conforming to various types of surfaces or human skins for portable and wearable applications. Flexible photodetectors as fundamental devices have been receiving increasing attention owing to their potential applications in artificial intelligence, aerospace industry, and wise information technology of 120, among which perovskite is a promising candidate as the light-harvesting material for its outstanding optical and electrical properties, remarkable mechanical flexibility, low-cost and low-temperature processing methods. To date, most of the reports have demonstrated the fabrication methods of the perovskite materials, materials engineering, applications in solar cells, light-emitting diodes, lasers, and photodetectors, strategies for device performance enhancement, few can be seen with a focus on the processing strategies of perovskite-based flexible photodetectors, which we will give a comprehensive summary, herein. To begin with, a brief introduction to the fabrication methods of perovskite (solution and vapor-based methods), device configurations (photovoltaic, photoconductor, and phototransistor), and performance parameters of the perovskite-based photodetectors are first arranged. Emphatically, processing strategies for photodetectors are presented following, including flexible substrates (i.e., polymer, carbon cloth, fiber, paper, etc.), soft electrodes (i.e., metal-based conductive networks, carbon-based conductive materials, and two-dimensional (2D) conductive materials, etc.), conformal encapsulation (single-layer and multilayer stacked encapsulation), low-dimensional perovskites (0D, 1D, and 2D nanostructures), and elaborate device structures. Typical applications of perovskite-based flexible photodetectors such as optical communication, image sensing, and health monitoring are further exhibited to learn the flexible photodetectors on a deeper level. Challenges and future research directions of perovskite-based flexible photodetectors are proposed in the end. The purpose of this review is not only to shed light on the basic design principle of flexible photodetectors, but also to serve as the roadmap for further developments of flexible photodetectors and exploring their applications in the fields of industrial manufacturing, human life, and health care.

Key wordsphotodetector    perovskite    flexible    processing    application
收稿日期: 2022-10-10      出版日期: 2023-07-11
Corresponding Author(s): Guanglan LIAO,Tielin SHI   
 引用本文:   
. [J]. Frontiers of Mechanical Engineering, 2023, 18(2): 33.
Xuning ZHANG, Xingyue LIU, Yifan HUANG, Bo SUN, Zhiyong LIU, Guanglan LIAO, Tielin SHI. Review on flexible perovskite photodetector: processing and applications. Front. Mech. Eng., 2023, 18(2): 33.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-023-0749-z
https://academic.hep.com.cn/fme/CN/Y2023/V18/I2/33
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Device structureEQERD*Response timeGLDRDriving voltagePhotocurrent/dark current
Photodiode≤ 100%LowHighShortSmallLargeLow (~0)Low
Photoconductor> 100%HighLowLongLargeNarrowHighHigh
Phototransistor> 100%HighLowLongLargeNarrowHighHigh
Tab.1  
Fig.5  
PolymerLight transmittance/%Dimensional stabilityTemperature tolerance/°CSolvent resistanceElastic modulus/MPa
Polyethylenenaphthalate (PEN)87.0Well120Well6000
Polyethylene terephthalate (PET)90.4Well79Well4000
Polyvinylidene fluoride (PVDF)25?30Well150Well1400
Polyimide (PI)30?60Well280Well500
Polydimethylsiloxane (PDMS)93Fair260Fair150
Poly(methyl methacrylimide) (PMMA)92Fair100Fair6500
Tab.2  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
MaterialDevice propertiesDevice performancesRef.
SubstrateWavebandStructureResponsivity/(A·W?1)Detectivity/JonesLDR/dBResponse time
Sb2Se3FlexibleInfraredPhotoconductor0.1558.58 × 1010?35/38 ms[142]
MoS2FlexibleVisiblePhotoconductor540~1 × 1012?0.5/1.15 s[143]
InSeFlexibleVisiblePhotoconductor561.92 × 1011?~0.17 s[144]
GaTeFlexibleVisiblePhotoconductor240.3??0.4/0.5 s[145]
ZnOFlexibleUltravioletPhotoconductor3.2429.6?17.9/46.6 s[146]
Ga2O3FlexibleUltravioletPhotovoltaic22.758.2 × 101397.6?[147]
MAPbI3RigidVisiblePhotoconductor24.87.7 × 1012?4/5.8 ms[148]
MAPbI3FlexibleInfraredPhotoconductor0.036??< 0.1 s[149]
MAPbI3RigidInfraredPhotovoltaic0.147.37 × 101119227 ns[150]
MAPbI3FlexibleInfraredPhotovoltaic0.4181.22 × 1013??[151]
MAPbBr3RigidVisiblePhotoconductor> 4000> 1 × 1013?~25 μs[152]
MAPbBr3FlexibleVisiblePhotoconductor56006.59 × 1011?3.2/9.2 μs[75]
MAPbBr3RigidVisiblePhotovoltaic0.261.5 × 1013256100 ns[71]
MAPbCl3RigidUltravioletPhotoconductor0.07> 1 × 1011?43/37 ms[153]
MAPbCl3RigidUltravioletPhotovoltaic> 0.15~6 × 101219015 ns[154]
MAPbCl3FlexibleUltravioletPhotovoltaic0.3597.95 × 1012?3.91/4.55 ms[155]
CsPbBr3RigidVisiblePhotoconductor559 × 1012?0.43/0.31 ms[156]
CsPbBr3FlexibleVisiblePhotoconductor31.1?8516 μs[81]
CsPbBr3RigidVisiblePhotovoltaic~101.88 × 1013172.728/270 μs[157]
CsPbBr3FlexibleVisiblePhotovoltaic10.19.35 × 1013??[133]
CsPbCl3RigidUltravioletPhotoconductor2.115.6 × 10125777/63 ms[158]
CsPbCl3FlexibleUltravioletPhotoconductor> 1 × 1062 × 1013?0.3/0.35 s[159]
CsPbCl3RigidUltravioletPhotovoltaic0.195.47 × 1012?4.27/14.9 μs[160]
CsPbCl3FlexibleUltravioletPhotovoltaic0.121.4 × 1013136~50 μs[161]
Cs2AgBiBr6RigidUltravioletPhotoconductor7.015.66 × 1011?956/995 μs[162]
Cs2AgBiBr6RigidUltravioletPhotovoltaic0.0751.87 × 10121000.24/0.29 ms[163]
Cs2AgBiBr6FlexibleUltravioletPhotovoltaic0.231.6 × 1013177.83.7/3.2 μs[164]
Tab.3  
Fig.17  
Fig.18  
Fig.19  
Abbreviations
ALDAtomic layer deposition
CCDCharge-coupled device
CMOSComplementary metal-oxide-semiconductor
CVDChemical vapor deposition
DMFN,N-dimethylformamide
DMSODimethyl sulfide
e-hElectron-hole
EQEExternal quantum efficiency
EVAEthylene-vinyl acetate
FETField-effect transistor
FTOFluorine-doped tin oxide
ITOIndium-tin-oxide
LDRLinear dynamic range
LEDLight-emitting diode
NEPNoise equivalent power
PDMSPolydimethylsiloxane
PECVDPlasma enhanced chemical vapor deposition
PEDOT:EVAPoly(3,4-ethylenedioxy-thiophene):poly(ethylene-co-vinyl acetate)
PENPolyethylenenaphthalate
PETPolyethylene terephthalate
PIPolyimide
PLQYPhotoluminescence quantum yield
PMMAPoly(methyl methacrylimide)
PPGPhotoplethysmography
PSPolystyrene
PVDFPolyvinylidene fluoride
Variables
hPlanck’s constant
cSpeed of light
dChannel length of photodetector
D*Specific detectivity
?fBandwidth
GPhotoconductive gain
qElementary electron charge
IdarkDark current
IlightLight current
PinPower density of incident light
PmaxMaximum detectable light density
PminMinimum detectable light density
RResponsivity
SEffective area of photodetector
VBias volatge
λWavelength of light
τfallFalling time
τlifetimeCarrier lifetime
τriseRising time
τtransitCarrier transit time
μCarrier mobility
  
1 Z Q He , K Wang , Z Zhao , T H Zhang , Y H Li , L Wang . A wearable flexible acceleration sensor for monitoring human motion. Biosensors, 2022, 12(8): 620
https://doi.org/10.3390/bios12080620
2 Y Wang , L J Sun , C Wang , F X Yang , X C Ren , X T Zhang , H L Dong , W P Hu . Organic crystalline materials in flexible electronics. Chemical Society Reviews, 2011, 40(1): 15–18
3 X Chen , S Pan , P J Feng , H F Bian , X Han , J H Liu , X Guo , D Z Chen , H X Ge , Q D Shen . Bioinspired ferroelectric polymer arrays as photodetectors with signal transmissible to neuron cells. Advanced Materials, 2016, 28(48): 10684–10691
https://doi.org/10.1002/adma.201603618
4 T Dong , J Simões , Z C Yang . Flexible photodetector based on 2D materials: processing, architectures, and applications. Advanced Materials Interfaces, 2020, 7(4): 1901657
https://doi.org/10.1002/admi.201901657
5 C Xie , F Yan . Flexible photodetectors based on novel functional materials. Small, 2017, 13(43): 1701822
https://doi.org/10.1002/smll.201701822
6 Y Q Zhang . The application of third generation semiconductor in power industry. In: Proceedings of the 10th Chinese Geosynthetics Conference & International Symposium on Civil Engineering and Geosynthetics (ISCEG 2020). Chengdu: E3S Web of Conferences, 2020, 198: 04011
https://doi.org/10.1051/e3sconf/202019804011
7 J F Li , C F Li , M S Xu , Z W Ji , K J Shi , X L Xu , H B Li , X G Xu . “W-shaped” injection current dependence of electroluminescence line width in green InGaN/GaN-based LED grown on silicon substrate. Optics Express, 2017, 25(20): A871–A879
https://doi.org/10.1364/OE.25.00A871
8 D L Zhu , W B Luo , T S Pan , S T Huang , K S Zhang , Q Xie , Y Shuai , C G Wu , W L Zhang . Fabrication of large-scale flexible silicon membrane by crystal-ion-slicing technique using BCB bonding layer. Applied Physics A, 2021, 127(9): 672
https://doi.org/10.1007/s00339-021-04834-w
9 X H Chen , L Yin , J Lv , A J Gross , M Le , N G Gutierrez , Y Li , I Jeerapan , F Giroud , A Berezovska , R K O’Reilly , S Xu , S Cosnier , J Wang . Stretchable and flexible buckypaper-based lactate biofuel cell for wearable electronics. Advanced Functional Materials, 2019, 29(46): 1905785
https://doi.org/10.1002/adfm.201905785
10 V Rajendran , A M V Mohan , M Jayaraman , T Nakagawa . All-printed, interdigitated, freestanding serpentine interconnects based flexible solid state supercapacitor for self-powered wearable electronics. Nano Energy, 2019, 65: 104055
https://doi.org/10.1016/j.nanoen.2019.104055
11 L Yin , J Lv , J Wang . Structural innovations in printed, flexible, and stretchable electronics. Advanced Materials Technologies, 2020, 5(11): 2000694
https://doi.org/10.1002/admt.202000694
12 Y L Xu , Q Q Lin . Photodetectors based on solution-processable semiconductors: recent advances and perspectives. Applied Physics Reviews, 2020, 7(1): 011315
https://doi.org/10.1063/1.5144840
13 J B Liang , D Takatsuki , M Higashiwaki , Y Shimizu , Y Ohno , Y Nagai , N Shigekawa . Fabrication of β-Ga2O3/Si heterointerface and characterization of interfacial structures for high-power device applications. Japanese Journal of Applied Physics, 2022, 61(SF): SF1001
https://doi.org/10.35848/1347-4065/ac4c6c
14 H Dong , C X Ran , W Y Gao , M J Li , Y D Xia , W Huang . Metal halide perovskite for next-generation optoelectronics: progresses and prospects. eLight, 2023, 3(1): 3
https://doi.org/10.1186/s43593-022-00033-z
15 W Kim , H Kim , T J Yoo , J Y Lee , J Y Jo , B H Lee , A A Sasikala , G Y Jung , Y Pak . Perovskite multifunctional logic gates via bipolar photoresponse of single photodetector. Nature Communications, 2022, 13(1): 720
https://doi.org/10.1038/s41467-022-28374-w
16 P Roy , A Ghosh , F Barclay , A Khare , E Cuce . Perovskite solar cells: a review of the recent advances. Coatings, 2022, 12(8): 1089
https://doi.org/10.3390/coatings12081089
17 C L He , X G Liu . The rise of halide perovskite semiconductors. Light: Science & Applications, 2023, 12(1): 15
https://doi.org/10.1038/s41377-022-01010-4
18 A Dey , J Z Ye , A De , E Debroye , S K Ha , E Bladt , A S Kshirsagar , Z Y Wang , J Yin , Y Wang , L N Quan , F Yan , M Y Gao , X M Li , J Shamsi , T Debnath , M H Cao , M A Scheel , S Kumar , J A Steele , M Gerhard , L Chouhan , K Xu , X G Wu , Y X Li , Y N Zhang , A Dutta , C Han , I Vincon , A L Rogach , A Nag , A Samanta , B A Korgel , C J Shih , D R Gamelin , D H Son , H B Zeng , H Z Zhong , H D Sun , H V Demir , I G Scheblykin , I Mora-Seró , J K Stolarczyk , J Z Zhang , J Feldmann , J Hofkens , J M Luther , J Pérez-Prieto , L Li , L Manna , M I Bodnarchuk , M V Kovalenko , M B J Roeffaers , N Pradhan , O F Mohammed , O M Bakr , P D Yang , P Müller-Buschbaum , P V Kamat , Q L Bao , Q Zhang , R Krahne , R E Galian , S D Stranks , S Bals , V Biju , W A Tisdale , Y Yan , R L Z Hoye , L Polavarapu . State of the art and prospects for halide perovskite nanocrystals. ACS Nano, 2021, 15(7): 10775–10981
https://doi.org/10.1021/acsnano.0c08903
19 J Z Ye , M M Byranvand , C O Martínez , R L Z Hoye , M Saliba , L Polavarapu . Defect passivation in lead-halide perovskite nanocrystals and thin films: toward efficient LEDs and solar cells. Angewandte Chemie, 2021, 133(40): 21804–21828
https://doi.org/10.1002/ange.202102360
20 E Koren , E Lörtscher , C Rawlings , A W Knoll , U Duerig . Adhesion and friction in mesoscopic graphite contacts. Science, 2015, 348(6235): 679–683
https://doi.org/10.1126/science.aaa4157
21 Y C Liu , Z Yang , S Z Liu . Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications. Advanced Science, 2018, 5(1): 1700471
https://doi.org/10.1002/advs.201700471
22 C H Ng , K Nishimura , N Ito , K Hamada , D Hirotani , Z Wang , F Yang , S Likubo , Q Shen , K Yoshino , T Minemoto , S Hayase . Role of GeI2 and SnF2 additives for SnGe perovskite solar cells. Nano Energy, 2019, 58: 130–137
https://doi.org/10.1016/j.nanoen.2019.01.026
23 M Brosch , M Deckert , S Rathi , K Takagaki , T Weidner , F W Ohl , B Schmidt , M T Lippert . An optically transparent multi-electrode array for combined electrophysiology and optophysiology at the mesoscopic scale. Journal of Neural Engineering, 2020, 17(4): 046014
https://doi.org/10.1088/1741-2552/aba1a4
24 S M Lee , Y Cho , D Y Kim , J S Chae , K C Choi . Enhanced light extraction from mechanically flexible, nanostructured organic light-emitting diodes with plasmonic nanomesh electrodes. Advanced Optical Materials, 2015, 3(9): 1240–1247
https://doi.org/10.1002/adom.201500103
25 C Y Wu , Z Y Wang , L Liang , T J Gui , W Zhong , R C Du , C Xie , L Wang , L B Luo . Graphene-assisted growth of patterned perovskite films for sensitive light detector and optical image sensor application. Small, 2019, 15(19): 1900730
https://doi.org/10.1002/smll.201900730
26 S Chaudhary , S K Gupta , C M Singh Negi . Enhanced performance of perovskite photodetectors fabricated by two-step spin coating approach. Materials Science in Semiconductor Processing, 2020, 109: 104916
https://doi.org/10.1016/j.mssp.2020.104916
27 Z Yang , M Q Wang , J J Li , J J Dou , H W Qiu , J Y Shao . Spray-coated CsPbBr3 quantum dot films for perovskite photodiodes. ACS Applied Materials & Interfaces, 2018, 10(31): 26387–26395
https://doi.org/10.1021/acsami.8b07334
28 S C Tong , C D Gong , C J Zhang , G Liu , D Zhang , C H Zhou , J Sun , S Xiao , J He , Y L Gao , J L Yang . Fully-printed, flexible cesium-doped triple cation perovskite photodetector. Applied Materials Today, 2019, 15: 389–397
https://doi.org/10.1016/j.apmt.2019.03.001
29 S C Tong , H Wu , C J Zhang , S G Li , C H Wang , J Q Shen , S Xiao , J He , J L Yang , J Sun , Y L Gao . Large-area and high-performance CH3NH3PbI3 perovskite photodetectors fabricated via doctor blading in ambient condition. Organic Electronics, 2017, 49: 347–354
https://doi.org/10.1016/j.orgel.2017.07.011
30 Q L Wang , G N Zhang , H Y Zhang , Y Q Duan , Z P Yin , Y A Huang . High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Advanced Functional Materials, 2021, 31(28): 2100857
https://doi.org/10.1002/adfm.202100857
31 H M Wei , H Ma , M Q Tai , Y Wei , D Q Li , X Y Zhao , H Lin , S S Fan , K L Jiang . Perovskite photodetectors prepared by flash evaporation printing. RSC Advances, 2017, 7(55): 34795–34800
https://doi.org/10.1039/C7RA04061J
32 W Li , Y L Xu , J L Peng , R M Li , J N Song , H H Huang , L H Cui , Q Q Lin . Evaporated perovskite thick junctions for X-ray detection. ACS Applied Materials & Interfaces, 2021, 13(2): 2971–2978
https://doi.org/10.1021/acsami.0c20973
33 X N Zhang , X Y Liu , B Sun , H B Ye , C H He , L X Kong , G L Li , Z Y Liu , G L Liao . Ultrafast, self-powered, and charge-transport-layer-free ultraviolet photodetectors based on sequentially vacuum-evaporated lead-free Cs2AgBiBr6 thin films. ACS Applied Materials & Interfaces, 2021, 13(30): 35949–35960
https://doi.org/10.1021/acsami.1c08613
34 X Y Liu , Z Y Liu , J J Li , X H Tan , B Sun , H Fang , S Xi , T L Shi , Z R Tang , G L Liao . Ultrafast, self-powered and charge-transport-layer-free photodetectors based on high-quality evaporated CsPbBr3 perovskites for applications in optical communication. Journal of Materials Chemistry C, 2020, 8(10): 3337–3350
https://doi.org/10.1039/C9TC06630F
35 C C Tian , F Wang , Y P Wang , Z Yang , X J Chen , J J Mei , H Z Liu , D X Zhao . Chemical vapor deposition method grown all-inorganic perovskite microcrystals for self-powered photodetectors. ACS Applied Materials & Interfaces, 2019, 11(17): 15804–15812
https://doi.org/10.1021/acsami.9b03551
36 R Swartwout , M T Hoerantner , V Bulović . Scalable deposition methods for large-area production of perovskite thin films. Energy & Environmental Materials, 2019, 2(2): 119–145
https://doi.org/10.1002/eem2.12043
37 X F Dai , K Xu , F A Wei . Recent progress in perovskite solar cells: the perovskite layer. Beilstein Journal of Nanotechnology, 2020, 11: 51–60
https://doi.org/10.3762/bjnano.11.5
38 D W Huang , P F Xie , Z X Pan , H S Rao , X H Zhong . One-step solution deposition of CsPbBr3 based on precursor engineering for efficient all-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2019, 7(39): 22420–22428
https://doi.org/10.1039/C9TA08465G
39 X J Wan , Z Yu , W M Tian , F Z Huang , S Y Jin , X C Yang , Y B Cheng , A Hagfeldt , L C Sun . Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology. Journal of Energy Chemistry, 2020, 46: 8–15
https://doi.org/10.1016/j.jechem.2019.10.017
40 O Y Gong , M K Seo , J H Choi , S Y Kim , D H Kim , I S Cho , N G Park , G S Han , H S Jung . High-performing laminated perovskite solar cells by surface engineering of perovskite films. Applied Surface Science, 2022, 591: 153148
https://doi.org/10.1016/j.apsusc.2022.153148
41 S Das , B Yang , G Gu , P C Joshi , I N Ivanov , C M Rouleau , T Aytug , D B Geohegan , K Xiao . High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photonics, 2015, 2(6): 680–686
https://doi.org/10.1021/acsphotonics.5b00119
42 H S Kim , S H Im , N G Park . Organolead halide perovskite: new horizons in solar cell research. The Journal of Physical Chemistry C, 2014, 118(11): 5615–5625
https://doi.org/10.1021/jp409025w
43 X Y Ding , J H Liu , T A L Harris . A review of the operating limits in slot die coating processes. AIChE Journal, 2016, 62(7): 2508–2524
https://doi.org/10.1002/aic.15268
44 K Q Huang , H Y Li , C J Zhang , Y X Gao , T J Liu , J Zhang , Y L Gao , Y Y Peng , L M Ding , J L Yang . Highly efficient perovskite solar cells processed under ambient conditions using in situ substrate-heating-assisted deposition. Solar RRL, 2019, 3(3): 1800318
https://doi.org/10.1002/solr.201800318
45 B T Liu , J H Yang , Y S Huang . Highly efficient perovskite solar cells fabricated under a 70% relative humidity atmosphere. Journal of Power Sources, 2021, 500: 229985
https://doi.org/10.1016/j.jpowsour.2021.229985
46 A Dehghani , F Jahanshah , D Borman , K Dennis , J Wang . Design and engineering challenges for digital ink-jet printing on textiles. International Journal of Clothing Science and Technology, 2004, 16(1/2): 262–273
https://doi.org/10.1108/09556220410520531
47 A Khan , K Rahman , D S Kim , K H Choi . Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process. Journal of Materials Processing Technology, 2012, 212(3): 700–706
https://doi.org/10.1016/j.jmatprotec.2011.10.024
48 Y C Li , B Shi , Q J Xu , L L Yan , N Y Ren , Y L Chen , W Han , Q Huang , Y Zhao , X D Zhang . Wide bandgap interface layer induced stabilized perovskite/silicon tandem solar cells with stability over ten thousand hours. Advanced Energy Materials, 2021, 11(48): 2102046
https://doi.org/10.1002/aenm.202102046
49 Y L Zhang , Y Huang , C W Zhou , Y F Xu , J Q Zhong , H Y Mao . Crystalline structures and optoelectronic properties of orthorhombic CsPbBr3 polycrystalline films grown by the co-evaporation method. Vacuum, 2022, 202: 111219
https://doi.org/10.1016/j.vacuum.2022.111219
50 C W Li , Z N Song , C Chen , C X Xiao , B Subedi , S P Harvey , N Shrestha , K K Subedi , L Chen , D C Liu , Y Li , Y W Kim , C S Jiang , M J Heben , D W Zhao , R J Ellingson , N J Podraza , M Al-Jassim , Y F Yan . Low-bandgap mixed tin-lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nature Energy, 2020, 5(10): 768–776
https://doi.org/10.1038/s41560-020-00692-7
51 G X Liang , H B Lan , P Fan , C F Lan , Z H Zheng , H X Peng , J T Luo . Highly uniform large-area (100 cm2) perovskite CH3NH3PbI3 thin-films prepared by single-source thermal evaporation. Coatings, 2018, 8(8): 256
https://doi.org/10.3390/coatings8080256
52 M Ahmadi , T Wu , B Hu . A review on organic-inorganic halide perovskite photodetectors: device engineering and fundamental physics. Advanced Materials, 2017, 29(41): 1605242
https://doi.org/10.1002/adma.201605242
53 H Chen , H Wang , J Wu , F Wang , T Zhang , Y F Wang , D T Liu , S B Li , R V Penty , I H White . Flexible optoelectronic devices based on metal halide perovskites. Nano Research, 2020, 13(8): 1997–2018
https://doi.org/10.1007/s12274-020-2805-x
54 Y Wang , D L Li , L F Chao , T T Niu , Y H Chen , W Huang . Perovskite photodetectors for flexible electronics: recent advances and perspectives. Applied Materials Today, 2022, 28: 101509
https://doi.org/10.1016/j.apmt.2022.101509
55 D D Hao , J Zou , J Huang . Recent developments in flexible photodetectors based on metal halide perovskite. InfoMat, 2020, 2(1): 139–169
https://doi.org/10.1002/inf2.12053
56 C L Li , J Li , Z P Li , H Y Zhang , Y Y Dang , F G Kong . High-performance photodetectors based on nanostructured perovskites. Nanomaterials, 2021, 11(4): 1038
https://doi.org/10.3390/nano11041038
57 Y Wang , X W Zhang , Q Jiang , H Liu , D G Wang , J H Meng , J B You , Z G Yin . Interface engineering of high-performance perovskite photodetectors based on PVP/SnO2 electron transport layer. ACS Applied Materials & Interfaces, 2018, 10(7): 6505–6512
https://doi.org/10.1021/acsami.7b18511
58 W Tian , H P Zhou , L Li . Hybrid organic-inorganic perovskite photodetectors. Small, 2017, 13(41): 1702107
https://doi.org/10.1002/smll.201702107
59 J L Miao , F J Zhang . Recent progress on highly sensitive perovskite photodetectors. Journal of Materials Chemistry C, 2019, 7(7): 1741–1791
https://doi.org/10.1039/C8TC06089D
60 Z Yang , J J Dou , M Q Wang , J J Li , J Huang , J Y Shao . Flexible all-inorganic photoconductor detectors based on perovskite/hole-conducting layer heterostructures. Journal of Materials Chemistry C, 2018, 6(25): 6739–6746
https://doi.org/10.1039/C8TC02093K
61 C L Li , Y Ma , Y F Xiao , L Shen , L M Ding . Advances in perovskite photodetectors. InfoMat, 2020, 2(6): 1247–1256
https://doi.org/10.1002/inf2.12141
62 L D Li , S Ye , J L Qu , F F Zhou , J Song , G Z Shen . Recent advances in perovskite photodetectors for image sensing. Small, 2021, 17(18): 2005606
https://doi.org/10.1002/smll.202005606
63 F Li , C Ma , H Wang , W J Hu , W L Yu , A D Sheikh , T Wu . Ambipolar solution-processed hybrid perovskite phototransistors. Nature Communications, 2015, 6(1): 8238
https://doi.org/10.1038/ncomms9238
64 de Arquer F P García , A Armin , P Meredith , E H Sargent . Solution-processed semiconductors for next-generation photodetectors. Nature Reviews Materials, 2017, 2(3): 16100
https://doi.org/10.1038/natrevmats.2016.100
65 J F Huang , J Lee , H Nakayama , M Schrock , D X Cao , K Cho , G C Bazan , T Q Nguyen . Understanding and countering illumination-sensitive dark current: toward organic photodetectors with reliable high detectivity. ACS Nano, 2021, 15(1): 1753–1763
https://doi.org/10.1021/acsnano.0c09426
66 H Kim , J Kang , H Ahn , I H Jung . Contribution of dark current density to the photodetecting properties of thieno[3,4-b]pyrazine-based low bandgap polymers. Dyes and Pigments, 2022, 197: 109910
https://doi.org/10.1016/j.dyepig.2021.109910
67 D De Fazio , B Uzlu , I Torre , C Monasterio-Balcells , S Gupta , T Khodkov , Y Bi , Z X Wang , M Otto , M C Lemme , S Goossens , D Neumaier , F H L Koppens . Graphene-quantum dot hybrid photodetectors with low dark-current readout. ACS Nano, 2020, 14(9): 11897–11905
https://doi.org/10.1021/acsnano.0c04848
68 A Grimoldi , L Colella , L La Monaca , G Azzellino , M Caironi , C Bertarelli , D Natali , M Sampietro . Inkjet printed polymeric electron blocking and surface energy modifying layer for low dark current organic photodetectors. Organic Electronics, 2016, 36: 29–34
https://doi.org/10.1016/j.orgel.2016.05.021
69 D P Zhao , R M Saputra , P Song , Y H Yang , Y Z Li . How graphene strengthened molecular photoelectric performance of solar cells: a photo current-voltage assessment. Solar Energy, 2021, 213: 271–283
https://doi.org/10.1016/j.solener.2020.11.034
70 W H Hu , C Vael , M Diethelm , K Strassel , S B Anantharaman , A Aribia , M Cremona , S Jenatsch , F Nüesch , R Hany . On the response speed of narrowband organic optical upconversion devices. Advanced Optical Materials, 2022, 10(17): 2200695
https://doi.org/10.1002/adom.202200695
71 C X Bao , Z L Chen , Y J Fang , H T Wei , Y H Deng , X Xiao , L L Li , J S Huang . Low-noise and large-linear-dynamic-range photodetectors based on hybrid-perovskite thin-single-crystals. Advanced Materials, 2017, 29(39): 1703209
https://doi.org/10.1002/adma.201703209
72 A De Sanctis , G F Jones , D J Wehenkel , F Bezares , F H L Koppens , M F Craciun , S Russo . Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors. Science Advances, 2017, 3(5): e1602617
https://doi.org/10.1126/sciadv.1602617
73 J Zhang , J A Li , W Cheng , J H Zhang , Z Zhou , X D Sun , L L Li , J G Liang , Y Shi , L J Pan . Challenges in materials and devices of electronic skin. ACS Materials Letters, 2022, 4(4): 577–599
https://doi.org/10.1021/acsmaterialslett.1c00799
74 S T Han , H Y Peng , Q J Sun , S Venkatesh , K S Chung , S C Lau , Y Zhou , V A L Roy . An overview of the development of flexible sensors. Advanced Materials, 2017, 29(33): 1700375
https://doi.org/10.1002/adma.201700375
75 H Jing , R W Peng , R M Ma , J He , Y Zhou , Z Q Yang , C Y Li , Y Liu , X J Guo , Y Y Zhu , D Wang , J Su , C Sun , W Z Bao , M Wang . Flexible ultrathin single-crystalline perovskite photodetector. Nano Letters, 2020, 20(10): 7144–7151
https://doi.org/10.1021/acs.nanolett.0c02468
76 Y H Lee , I Song , S H Kim , J H Park , S O Park , J H Lee , Y Won , K Cho , S K Kwak , J H Oh . Perovskite granular wire photodetectors with ultrahigh photodetectivity. Advanced Materials, 2020, 32(32): 2002357
https://doi.org/10.1002/adma.202002357
77 Q S Tan , G Ye , Y Zhang , X J Du , H N Liu , L M Xie , Y Zhou , N Liu . Vacuum-filtration enabled large-area CsPbBr3 films on porous substrates for flexible photodetectors. Journal of Materials Chemistry C, 2019, 7(43): 13402–13409
https://doi.org/10.1039/C9TC04032C
78 T Kim , S Jeong , K H Kim , H Shim , D Kim , H J Kim . Engineered surface halide defects by two-dimensional perovskite passivation for deformable intelligent photodetectors. ACS Applied Materials & Interfaces, 2022, 14(22): 26004–26013
https://doi.org/10.1021/acsami.2c03089
79 Y T Chen , C Y Zhao , T T Zhang , X H Wu , W J Zhang , S J Ding . Flexible and filter-free color-imaging sensors with multicomponent perovskites deposited using enhanced vapor technology. Small, 2021, 17(26): 2007543
https://doi.org/10.1002/smll.202007543
80 F Lédée , A Ciavatti , M Verdi , L Basiricò , B Fraboni . Ultra-stable and robust response to X-rays in 2D layered perovskite micro-crystalline films directly deposited on flexible substrate. Advanced Optical Materials, 2022, 10(1): 2101145
https://doi.org/10.1002/adom.202101145
81 X M Li , D J Yu , J Chen , Y Wang , F Cao , Y Wei , Y Wu , L Wang , Y Zhu , Z G Sun , J P Ji , Y L Shen , H D Sun , H B Zeng . Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano, 2017, 11(2): 2015–2023
https://doi.org/10.1021/acsnano.6b08194
82 S T Liu , X H Liu , Z F Zhu , S L Wang , Y Gu , F K Shan , Y S Zou . Improved flexible ZnO/CsPbBr3/Graphene UV photodetectors with interface optimization by solution process. Materials Research Bulletin, 2020, 130: 110956
https://doi.org/10.1016/j.materresbull.2020.110956
83 Y Wang , W W Liu , W Xin , T T Zou , X Zheng , Y S Li , X H Xie , X J Sun , W L Yu , Z B Liu , S Q Chen , J J Yang , C L Guo . Back-reflected performance-enhanced flexible perovskite photodetectors through substrate texturing with femtosecond laser. ACS Applied Materials & Interfaces, 2020, 12(23): 26614–26623
https://doi.org/10.1021/acsami.0c04124
84 J Lei , F Gao , H X Wang , J Li , J X Jiang , X Wu , R R Gao , Z Yang , S Z Liu . Efficient planar CsPbBr3 perovskite solar cells by dual-source vacuum evaporation. Solar Energy Materials and Solar Cells, 2018, 187: 1–8
https://doi.org/10.1016/j.solmat.2018.07.009
85 H X Sun , T Y Lei , W Tian , F R Cao , J Xiong , L Li . Self-powered, flexible, and solution-processable perovskite photodetector based on low-cost carbon cloth. Small, 2017, 13(28): 1701042
https://doi.org/10.1002/smll.201701042
86 D Ding , H N Li , H Z Yao , L Liu , B B Tian , C L Su , Y Wang , Y M Shi . Template growth of perovskites on yarn fibers induced by capillarity for flexible photoelectric applications. Journal of Materials Chemistry C, 2019, 7(31): 9496–9503
https://doi.org/10.1039/C9TC01879D
87 H X Sun , W Tian , F R Cao , J Xiong , L Li . Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector. Advanced Materials, 2018, 30(21): 1706986
https://doi.org/10.1002/adma.201706986
88 H J Kim , H Oh , T Kim , D Kim , M Park . Stretchable photodetectors based on electrospun polymer/perovskite composite nanofibers. ACS Applied Nano Materials, 2022, 5(1): 1308–1316
https://doi.org/10.1021/acsanm.1c03875
89 Q H Zheng , H X Li , Y L Zheng , Y N Li , X Liu , S X Nie , X H Ouyang , L H Chen , Y H Ni . Cellulose-based flexible organic light-emitting diodes with enhanced stability and external quantum efficiency. Journal of Materials Chemistry C, 2021, 9(13): 4496–4504
https://doi.org/10.1039/D1TC00019E
90 M Hassan , G Abbas , N Li , A Afzal , Z Haider , S Ahmed , X R Xu , C F Pan , Z C Peng . Significance of flexible substrates for wearable and implantable devices: recent advances and perspectives. Advanced Materials Technologies, 2022, 7(3): 2100773
https://doi.org/10.1002/admt.202100773
91 X Z Zhang , D He , Q Yang , M Z Atashbar . Rapid, highly sensitive, and highly repeatable printed porous paper humidity sensor. Chemical Engineering Journal, 2022, 433: 133751
https://doi.org/10.1016/j.cej.2021.133751
92 S X Li , X L Xu , Y Yang , Y S Xu , Y Xu , H Xia . Highly deformable high-performance paper-based perovskite photodetector with improved stability. ACS Applied Materials & Interfaces, 2021, 13(27): 31919–31927
https://doi.org/10.1021/acsami.1c05828
93 W L Wang , G L Li , Z H Jiang , Y Zhang , T J Hu , J Yi , Z Y Chu . Structural, optical and flexible properties of CH3NH3PbI3 perovskite films deposited on paper substrates. Optical Materials, 2021, 114: 110926
https://doi.org/10.1016/j.optmat.2021.110926
94 H J Fang , J W Li , J Ding , Y Sun , Q Li , J L Sun , L D Wang , Q F Yan . An origami perovskite photodetector with spatial recognition ability. ACS Applied Materials & Interfaces, 2017, 9(12): 10921–10928
https://doi.org/10.1021/acsami.7b02213
95 Y Yang , H J Hu , Z Y Chen , Z Y Wang , L M Jiang , G X Lu , X J Li , R M Chen , J Jin , H C Kang , H X Chen , S Lin , S Q Xiao , H Y Zhao , R Xiong , J Shi , Q F Zhou , S Xu , Y Chen . Stretchable nanolayered thermoelectric energy harvester on complex and dynamic surfaces. Nano Letters, 2020, 20(6): 4445–4453
https://doi.org/10.1021/acs.nanolett.0c01225
96 X J Chen , X X Gao , A Nomoto , K Shi , M Y Lin , H J Hu , Y Gu , Y Z Zhu , Z H Wu , X Chen , X Y Wang , B Y Qi , S Zhou , H Ding , S Xu . Fabric-substrated capacitive biopotential sensors enhanced by dielectric nanoparticles. Nano Research, 2021, 14(9): 3248–3252
https://doi.org/10.1007/s12274-021-3458-0
97 A Mathur , H Fan , V Maheshwari . Soft polymer-organolead halide perovskite films for highly stretchable and durable photodetectors with Pt-Au nanochain-based electrodes. ACS Applied Materials & Interfaces, 2021, 13(49): 58956–58965
https://doi.org/10.1021/acsami.1c18939
98 C X Bao , W D Zhu , J Yang , F M Li , S Gu , Y R Q Wang , T Yu , J Zhu , Y Zhou , Z G Zou . Highly flexible self-powered organolead trihalide perovskite photodetectors with gold nanowire networks as transparent electrodes. ACS Applied Materials & Interfaces, 2016, 8(36): 23868–23875
https://doi.org/10.1021/acsami.6b08318
99 J Yang , C X Bao , K Zhu , T Yu , Q Y Xu . High-performance transparent conducting metal network electrodes for perovksite photodetectors. ACS Applied Materials & Interfaces, 2018, 10(2): 1996–2003
https://doi.org/10.1021/acsami.7b15205
100 G M Lin , Y W Lin , B Y Sun . Transparent graphene electrodes based hybrid perovskites photodetectors with broad spectral response from UV-visible to near-infrared. Nanotechnology, 2022, 33(8): 085204
https://doi.org/10.1088/1361-6528/ac3aaa
101 J M Kim , S Kim , S H Choi . High-performance n-i-p-type perovskite photodetectors employing graphene-transparent conductive electrodes n-type doped with amine group molecules. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 734–739
https://doi.org/10.1021/acssuschemeng.8b04322
102 W Jang , B G Kim , S Seo , A Shawky , M S Kim , K Kim , B Mikladal , E I Kauppinen , S Maruyama , I Jeon , D H Wang . Strong dark current suppression in flexible organic photodetectors by carbon nanotube transparent electrodes. Nano Today, 2021, 37: 101081
https://doi.org/10.1016/j.nantod.2021.101081
103 A A Marunchenko , M A Baranov , E V Ushakova , D R Ryabov , A P Pushkarev , D S Gets , A G Nasibulin , S V Makarov . Single-walled carbon nanotube thin film for flexible and highly responsive perovskite photodetector. Advanced Functional Materials, 2022, 32(12): 2109834
https://doi.org/10.1002/adfm.202109834
104 W Deng , H C Huang , H M Jin , W Li , X Chu , D Xiong , W Yan , F J Chun , M L Xie , C Luo , L Jin , C Q Liu , H T Zhang , W L Deng , W Q Yang . All-sprayed-processable, large-area, and flexible perovskite/MXene-based photodetector arrays for photocommunication. Advanced Optical Materials, 2019, 7(6): 1801521
https://doi.org/10.1002/adom.201801521
105 A B Ren , J H Zou , H G Lai , Y X Huang , L M Yuan , H Xu , K Shen , H Wang , S Y Wei , Y F Wang , X Hao , J Q Zhang , D W Zhao , J Wu , Z M Wang . Direct laser-patterned MXene-perovskite image sensor arrays for visible-near infrared photodetection. Materials Horizons, 2020, 7(7): 1901–1911
https://doi.org/10.1039/D0MH00537A
106 J Hu , X Xiong , W Guan , Z Xiao , C Tan , H Long . Durability engineering in all-inorganic CsPbX3 perovskite solar cells: strategies and challenges. Materials Today Chemistry, 2022, 24: 100792
https://doi.org/10.1016/j.mtchem.2022.100792
107 G B Wu , R Liang , M Z Ge , G X Sun , Y Zhang , G C Xing . Surface passivation using 2D perovskites toward efficient and stable perovskite solar cells. Advanced Materials, 2022, 34(8): 2105635
https://doi.org/10.1002/adma.202105635
108 Q Cao , T Wang , J B Yang , Y X Zhang , Y K Li , X Y Pu , J S Zhao , H Chen , X Q Li , I Tojiboyev , J Z Chen , L Etgar , X H Li . Environmental-friendly polymer for efficient and stable inverted perovskite solar cells with mitigating lead leakage. Advanced Functional Materials, 2022, 32(32): 2201036
https://doi.org/10.1002/adfm.202201036
109 W Q Wu , X D Wang , X Han , Z Yang , G Y Gao , Y F Zhang , J F Hu , Y W Tan , A L Pan , C F Pan . Flexible photodetector arrays based on patterned CH3NH3PbI3‒xClx perovskite film for real-time photosensing and imaging. Advanced Materials, 2019, 31(3): 1805913
https://doi.org/10.1002/adma.201805913
110 W Q Wu , X Han , J Li , X D Wang , Y F Zhang , Z H Huo , Q S Chen , X D Sun , Z S Xu , Y W Tan , C F Pan , A L Pan . Ultrathin and conformable lead halide perovskite photodetector arrays for potential application in retina-like vision sensing. Advanced Materials, 2021, 33(9): 2006006
https://doi.org/10.1002/adma.202006006
111 F Y Zhao , X Luo , C J Gu , J M Chen , Z Y Hu , Y Q Peng . Novel 3D printing encapsulation strategies for perovskite photodetectors. Advanced Materials Technologies, 2022, 7(12): 2200521
https://doi.org/10.1002/admt.202200521
112 S Ma , G Z Yuan , Y Zhang , N Yang , Y J Li , Q Chen . Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy & Environmental Science, 2022, 15(1): 13–55
https://doi.org/10.1039/D1EE02882K
113 C Otero-Martínez , N Fiuza-Maneiro , L Polavarapu . Enhancing the intrinsic and extrinsic stability of halide perovskite nanocrystals for efficient and durable optoelectronics. ACS Applied Materials & Interfaces, 2022, 14(30): 34291–34302
https://doi.org/10.1021/acsami.2c01822
114 S M H Qaid , H M Ghaithan , K K AlHarbi , B A Al-Asbahi , A S Aldwayyan . Enhancement of light amplification of CsPbBr3 perovskite quantum dot films via surface encapsulation by PMMA polymer. Polymers, 2021, 13(15): 2574
https://doi.org/10.3390/polym13152574
115 X You , J J Wu , Y W Chi . Superhydrophobic silica aerogels encapsulated fluorescent perovskite quantum dots for reversible sensing of SO2 in a 3D-printed gas cell. Analytical Chemistry, 2019, 91(8): 5058–5066
https://doi.org/10.1021/acs.analchem.8b05253
116 B Z Xia , M Tu , B Pradhan , F Ceyssens , M L Tietze , V Rubio-Giménez , N Wauteraerts , Y J Gao , M Kraft , J A Steele , E Debroye , J Hofkens , R Ameloot . Flexible metal halide perovskite photodetector arrays via photolithography and dry lift-off patterning. Advanced Engineering Materials, 2022, 24(1): 2100930
https://doi.org/10.1002/adem.202100930
117 R Bose , J Yin , Y Z Zheng , C Yang , Y N Gartstein , O M Bakr , A V Malko , O F Mohammed . Gentle materials need gentle fabrication: encapsulation of perovskites by gas-phase alumina deposition. The Journal of Physical Chemistry Letters, 2021, 12(9): 2348–2357
https://doi.org/10.1021/acs.jpclett.0c03729
118 Y Takada , T Tsuji , N Okamoto , T Saito , K Kondo , T Yoshimura , N Fujimura , K Higuchi , A Kitajima , A Oshima . Aluminum-doped zinc oxide electrode for robust (Pb,La)(Zr,Ti)O3 capacitors: effect of oxide insulator encapsulation and oxide buffer layer. Journal of Materials Science: Materials in Electronics, 2014, 25(5): 2155–2161
https://doi.org/10.1007/s10854-014-1853-y
119 E M A Fuentes-Fernandez , A M Salomon-Preciado , B E Gnade , M A Quevedo-Lopez , P Shah , H N Alshareef . Fabrication of relaxer-based piezoelectric energy harvesters using a sacrificial poly-Si seeding layer. Journal of Electronic Materials, 2014, 43(11): 3898–3904
https://doi.org/10.1007/s11664-014-3308-x
120 V Steinmann , L Moro . Encapsulation requirements to enable stable organic ultra-thin and stretchable devices. Journal of Materials Research, 2018, 33(13): 1925–1936
https://doi.org/10.1557/jmr.2018.194
121 S H Tu , M Chen , L M Wu . Dual-encapsulation for highly stable all-inorganic perovskite quantum dots for long-term storage and reuse in white light-emitting diodes. Chemical Engineering Journal, 2021, 412: 128688
https://doi.org/10.1016/j.cej.2021.128688
122 S Rathore , A Singh . Bending fatigue damage reduction in indium tin oxide (ITO) by polyimide and ethylene vinyl acetate encapsulation for flexible solar cells. Engineering Research Express, 2020, 2(1): 015022
https://doi.org/10.1088/2631-8695/ab6ac5
123 Z D Luo , C P Zhang , L Yang , J B Zhang . Ambient spray coating of organic-inorganic composite thin films for perovskite solar cell encapsulation. ChemSusChem, 2022, 15(3): e202102008
https://doi.org/10.1002/cssc.202102008
124 Y Jiang , L B Qiu , E J Juarez-Perez , L K Ono , Z H Hu , Z H Liu , Z F Wu , L Q Meng , Q J Wang , Y B Qi . Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nature Energy, 2019, 4(7): 585–593
https://doi.org/10.1038/s41560-019-0406-2
125 Q S Dong , M Chen , Y H Liu , F T Eickemeyer , W D Zhao , Z H Dai , Y F Yin , C Jiang , J S Feng , S Y Jin , S Z Liu , S M Zakeeruddin , M Grätzel , N P Padture , Y T Shi . Flexible perovskite solar cells with simultaneously improved efficiency, operational stability, and mechanical reliability. Joule, 2021, 5(6): 1587–1601
https://doi.org/10.1016/j.joule.2021.04.014
126 Y R Shi , C H Chen , Y H Lou , Z K Wang . Strategies of perovskite mechanical stability for flexible photovoltaics. Materials Chemistry Frontiers, 2021, 5(20): 7467–7478
https://doi.org/10.1039/D1QM00616A
127 J J Ye , G Z Liu , L Jiang , H Y Zheng , L Z Zhu , X H Zhang , H X Wang , X Pan , S Y Dai . Crack-free perovskite layers for high performance and reproducible devices via improved control of ambient conditions during fabrication. Applied Surface Science, 2017, 407: 427–433
https://doi.org/10.1016/j.apsusc.2017.02.135
128 H P Wang , S Y Li , X Y Liu , Z F Shi , X S Fang , J H He . Low-dimensional metal halide perovskite photodetectors. Advanced Materials, 2021, 33(7): 2003309
https://doi.org/10.1002/adma.202003309
129 Y P Jeon , S J Woo , T W Kim . Transparent and flexible photodetectors based on CH3NH3PbI3 perovskite nanoparticles. Applied Surface Science, 2018, 434: 375–381
https://doi.org/10.1016/j.apsusc.2017.10.101
130 I M Asuo , P Fourmont , I Ka , D Gedamu , S Bouzidi , A Pignolet , R Nechache , S G Cloutier . Highly efficient and ultrasensitive large-area flexible photodetector based on perovskite nanowires. Small, 2019, 15(1): 1804150
https://doi.org/10.1002/smll.201804150
131 D J Wu , Y C Xu , H Zhou , X Feng , J Q Zhang , X Y Pan , Z Gao , R Wang , G K Ma , L Tao , H B Wang , J X Duan , H Z Wan , J Zhang , L P Shen , H Wang , T Y Zhai . Ultrasensitive, flexible perovskite nanowire photodetectors with long-term stability exceeding 5000 h. InfoMat, 2022, 4(9): e12320
https://doi.org/10.1002/inf2.12320
132 W Zheng , R C Lin , Z J Zhang , Q X Liao , J J Liu , F Huang . An ultrafast-temporally-responsive flexible photodetector with high sensitivity based on high-crystallinity organic-inorganic perovskite nanoflake. Nanoscale, 2017, 9(34): 12718–12726
https://doi.org/10.1039/C7NR04395C
133 K Shen , H Xu , X Li , J Guo , S Sathasivam , M Q Wang , A B Ren , K L Choy , I P Parkin , Z X Guo , J Wu . Flexible and self-powered photodetector arrays based on all-inorganic CsPbBr3 quantum dots. Advanced Materials, 2020, 32(22): 2000004
https://doi.org/10.1002/adma.202000004
134 C Perumal Veeramalai , S Y Yang , J Q Wei , M Sulaman , R N Zhi , M I Saleem , Y Tang , Y R Jiang , B S Zou . Porous single-wall carbon nanotube templates decorated with all-inorganic perovskite nanocrystals for ultraflexible photodetectors. ACS Applied Nano Materials, 2020, 3(1): 459–467
https://doi.org/10.1021/acsanm.9b02051
135 J L Zheng , C Z Luo , B Shabbir , C J Wang , W X Mao , Y P Zhang , Y M Huang , Y M Dong , J J Jasieniak , C X Pan , Q L Bao . Flexible photodetectors based on reticulated SWNT/perovskite quantum dot heterostructures with ultrahigh durability. Nanoscale, 2019, 11(16): 8020–8026
https://doi.org/10.1039/C8NR08026G
136 D J Wu , H Zhou , Z H Song , M Zheng , R H Liu , X Y Pan , H Z Wan , J Zhang , H Wang , X M Li , H B Zeng . Welding perovskite nanowires for stable, sensitive, flexible photodetectors. ACS Nano, 2020, 14(3): 2777–2787
https://doi.org/10.1021/acsnano.9b09315
137 H Deng , X K Yang , D D Dong , B Li , D Yang , S J Yuan , K K Qiao , Y B Cheng , J Tang , H S Song . Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability. Nano Letters, 2015, 15(12): 7963–7969
https://doi.org/10.1021/acs.nanolett.5b03061
138 H Oh , H Jin Kim , S Kim , J A Kim , G M Kang , M Park . Highly flexible and stable perovskite/microbead hybrid photodetectors with improved interfacial light trapping. Applied Surface Science, 2021, 544: 148850
https://doi.org/10.1016/j.apsusc.2020.148850
139 R Saraf , H Fan , V Maheshwari . Porous perovskite films integrated with Au−Pt nanowire-based electrodes for highly flexible large-area photodetectors. npj Flexible Electronics, 2020, 4(1): 30
https://doi.org/10.1038/s41528-020-00094-5
140 Y Zhan , Q F Cheng , J S Peng , Y Zhao , F Vogelbacher , X T Lai , F Y Wang , Y L Song , M Z Li . Nacre inspired robust self-encapsulating flexible perovskite photodetector. Nano Energy, 2022, 98: 107254
https://doi.org/10.1016/j.nanoen.2022.107254
141 X C Meng , Z R Cai , Y Y Zhang , X T Hu , Z Xing , Z Q Huang , Z D Huang , Y J Cui , T Hu , M Su , X F Liao , L Zhang , F Y Wang , Y L Song , Y W Chen . Bio-inspired vertebral design for scalable and flexible perovskite solar cells. Nature Communications, 2020, 11(1): 3016
https://doi.org/10.1038/s41467-020-16831-3
142 X X Wen , Z H Lu , L Valdman , G C Wang , M Washington , T M Lu . High-crystallinity epitaxial Sb2Se3 thin films on mica for flexible near-infrared photodetectors. ACS Applied Materials & Interfaces, 2020, 12(31): 35222–35231
https://doi.org/10.1021/acsami.0c08467
143 D S Schneider , A Grundmann , A Bablich , V Passi , S Kataria , H Kalisch , M Heuken , A Vescan , D Neumaier , M C Lemme . Highly responsive flexible photodetectors based on MOVPE grown uniform few-layer MoS2. ACS Photonics, 2020, 7(6): 1388–1395
https://doi.org/10.1021/acsphotonics.0c00361
144 P Li , Q Y Hao , J D Liu , D Y Qi , H B Gan , J Q Zhu , F Liu , Z J Zheng , W J Zhang . Flexible photodetectors based on all-solution-processed Cu electrodes and inse nanoflakes with high stabilities. Advanced Functional Materials, 2022, 32(10): 2108261
https://doi.org/10.1002/adfm.202108261
145 G Yu , Z Liu , X M Xie , X Ouyang , G Z Shen . Flexible photodetectors with single-crystalline GaTe nanowires. Journal of Materials Chemistry C, 2014, 2(30): 6104–6110
https://doi.org/10.1039/C4TC00917G
146 J N An , T S D Le , C H J Lim , V T Tran , Z Y Zhan , Y Gao , L X Zheng , G Z Sun , Y J Kim . Single-step selective laser writing of flexible photodetectors for wearable optoelectronics. Advanced Science, 2018, 5(8): 1800496
https://doi.org/10.1002/advs.201800496
147 Y H Wang , Z B Yang , H R Li , S Li , Y S Zhi , Z Y Yan , X Huang , X H Wei , W H Tang , Z P Wu . Ultrasensitive flexible solar-blind photodetectors based on graphene/amorphous Ga2O3 van der Waals heterojunctions. ACS Applied Materials & Interfaces, 2020, 12(42): 47714–47720
https://doi.org/10.1021/acsami.0c10259
148 S C Tong , J Sun , C H Wang , Y L Huang , C J Zhang , J Q Shen , H P Xie , D M Niu , S Xiao , Y B Yuan , J He , J L Yang , Y L Gao . High-performance broadband perovskite photodetectors based on CH3NH3PbI3/C8BTBT heterojunction. Advanced Electronic Materials, 2017, 3(7): 1700058
https://doi.org/10.1002/aelm.201700058
149 X Hu , X D Zhang , L Liang , J Bao , S Li , W L Yang , Y Xie . High-performance flexible broadband photodetector based on organolead halide perovskite. Advanced Functional Materials, 2014, 24(46): 7373–7380
https://doi.org/10.1002/adfm.201402020
150 C L Li , J R Lu , Y Zhao , L Y Sun , G X Wang , Y Ma , S M Zhang , J R Zhou , L Shen , W Huang . Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system. Small, 2019, 15(44): 1903599
https://doi.org/10.1002/smll.201903599
151 S F Leung , K T Ho , P K Kung , V K S Hsiao , H N Alshareef , Z L Wang , J H He . A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Advanced Materials, 2018, 30(8): 1704611
https://doi.org/10.1002/adma.201704611
152 M I Saidaminov , V Adinolfi , R Comin , A L Abdelhady , W Peng , I Dursun , M J Yuan , S Hoogland , E H Sargent , O M Bakr . Planar-integrated single-crystalline perovskite photodetectors. Nature Communications, 2015, 6(1): 8724
https://doi.org/10.1038/ncomms9724
153 H R Jung , Y Cho , W Jo . UV and visible photodetectors of MAPbBr3 and MAPbCl3 perovskite single crystals via single photocarrier transport design. Advanced Optical Materials, 2022, 10(7): 2102175
https://doi.org/10.1002/adom.202102175
154 Z L Chen , C L Li , A A Zhumekenov , X P Zheng , C Yang , H Z Yang , Y He , B Turedi , O F Mohammed , L Shen , O M Bakr . Solution-processed visible-blind ultraviolet photodetectors with nanosecond response time and high detectivity. Advanced Optical Materials, 2019, 7(19): 1900506
https://doi.org/10.1002/adom.201900506
155 Y Zhou , X Qiu , Z A Wan , Z H Long , S Poddar , Q P Zhang , Y C Ding , C L J Chan , D Q Zhang , K M Zhou , Y J Lin , Z Y Fan . Halide-exchanged perovskite photodetectors for wearable visible-blind ultraviolet monitoring. Nano Energy, 2022, 100: 107516
https://doi.org/10.1016/j.nanoen.2022.107516
156 Y Li , Z F Shi , S Li , L Z Lei , H F Ji , D Wu , T T Xu , Y T Tian , X J Li . High-performance perovskite photodetectors based on solution-processed all-inorganic CsPbBr3 thin films. Journal of Materials Chemistry C, 2017, 5(33): 8355–8360
https://doi.org/10.1039/C7TC02137B
157 G B Cen , Y J Liu , C X Zhao , G Wang , Y Fu , G H Yan , Y Yuan , C H Su , Z J Zhao , W J Mai . Atomic-layer deposition-assisted double-side interfacial engineering for high-performance flexible and stable CsPbBr3 perovskite photodetectors toward visible light communication applications. Small, 2019, 15(36): 1902135
https://doi.org/10.1002/smll.201902135
158 Z H Zhu , W Deng , W Li , F J Chun , C Luo , M L Xie , B Pu , N Lin , B Gao , W Q Yang . Antisolvent-induced fastly grown all-inorganic perovskite CsPbCl3 microcrystal films for high-sensitive UV photodetectors. Advanced Materials Interfaces, 2021, 8(6): 2001812
https://doi.org/10.1002/admi.202001812
159 M G Gong , R Sakidja , R Goul , D Ewing , M Casper , A Stramel , A Elliot , J Z Wu . High-performance all-inorganic CsPbCl3 perovskite nanocrystal photodetectors with superior stability. ACS Nano, 2019, 13(2): 1772–1783
https://doi.org/10.1021/acsnano.8b07850
160 Z L Hou , X Y Liu , G J Wen , S L Jiang . Enhancing the photoelectric performance of the self-powered all vapor-deposited CsPbCl3 ultraviolet photodetectors by a novel cadmium-doping strategy and heterojunction engineering. Solar Energy Materials and Solar Cells, 2023, 251: 112175
https://doi.org/10.1016/j.solmat.2022.112175
161 L Yang , W L Tsai , C S Li , B W Hsu , C Y Chen , C I Wu , H W Lin . High-quality conformal homogeneous all-vacuum deposited CsPbCl3 thin films and their UV photodiode applications. ACS Applied Materials & Interfaces, 2019, 11(50): 47054–47062
https://doi.org/10.1021/acsami.9b16264
162 L Z Lei , Z F Shi , Y Li , Z Z Ma , F Zhang , T T Xu , Y T Tian , D Wu , X J Li , G T Du . High-efficiency and air-stable photodetectors based on lead-free double perovskite Cs2AgBiBr6 thin films. Journal of Materials Chemistry C, 2018, 6(30): 7982–7988
https://doi.org/10.1039/C8TC02305K
163 Z H Shuang , H Zhou , D J Wu , X H Zhang , B A Xiao , G K Ma , J Zhang , H Wang . Low-temperature process for self-powered lead-free Cs2AgBiBr6 perovskite photodetector with high detectivity. Chemical Engineering Journal, 2022, 433: 134544
https://doi.org/10.1016/j.cej.2022.134544
164 G H Yan , B Q Jiang , Y Xiao , C X Zhao , Y Yuan , Z C Liang . Alkali metal ions induced high-quality all-inorganic Cs2AgBiBr6 perovskite films for flexible self-powered photodetectors. Applied Surface Science, 2022, 579: 152198
https://doi.org/10.1016/j.apsusc.2021.152198
165 C J N Syazwani , N H A Wahab , N Sunar , S H S Ariffin , K Y Wong , Y Aun . Indoor positioning system: a review. International Journal of Advanced Computer Science and Applications, 2022, 13(6): 477–490
https://doi.org/10.14569/IJACSA.2022.0130659
166 K O M Salih , T A Rashid , D Radovanovic , N Bacanin . A comprehensive survey on the internet of things with the industrial marketplace. Sensors, 2022, 22(3): 730
https://doi.org/10.3390/s22030730
167 M J Mohsin , I A Murdas . Design an outdoor light fidelity (Li-Fi) system based on all-optical OFDM architecture. International Journal of Intelligent Engineering and Systems, 2022, 15(3): 193–204
https://doi.org/10.22266/ijies2022.0630.16
168 Y Cao , Y F Zheng , X Wang , Y B Liu , Y Liu . Research and prospect on key technologies of indoor positioning based on visible light communication. Journal of Physics: Conference Series, 2022, 2160(1): 012074
https://doi.org/10.1088/1742-6596/2160/1/012074
169 R H Liu , J Q Zhang , H Zhou , Z H Song , Z N Song , C R Grice , D J Wu , L P Shen , H Wang . Solution-processed high-quality cesium lead bromine perovskite photodetectors with high detectivity for application in visible light communication. Advanced Optical Materials, 2020, 8(8): 1901735
https://doi.org/10.1002/adom.201901735
170 B Huang , J X Liu , Z Y Han , Y Gu , D J Yu , X B Xu , Y S Zou . High-performance perovskite dual-band photodetectors for potential applications in visible light communication. ACS Applied Materials & Interfaces, 2020, 12(43): 48765–48772
https://doi.org/10.1021/acsami.0c12161
171 S A H Mohsan , A Mazinani , H B Sadiq , H Amjad . A survey of optical wireless technologies: practical considerations, impairments, security issues and future research directions. Optical and Quantum Electronics, 2022, 54(3): 187
https://doi.org/10.1007/s11082-021-03442-5
172 S Schmid, J Ziegler, G Corbellini, T R Gross, S Mangold. Using consumer led light bulbs for low-cost visible light communication systems. In: Proceedings of the 1st ACM MobiCon Workshop on Visible Light Communication Systems. Hawaii: Association for Computing Machinery, 2014, 9–14
173 A K Dutta. Imaging beyond human vision. In: Proceedings of the 8th International Conference on Electrical and Computer Engineering. Dhaka: IEEE, 2014, 224–229
174 S. Nikzad High-performance silicon imagers and their applications in astrophysics, medicine and other fields. In: Nikzad S, ed. High Performance Silicon Imaging. Woodhead Publishing, 2014, 411–438
175 S M Lee , R Biswas , W G Li , D Kang , L Chan , J Yoon . Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics. ACS Nano, 2014, 8(10): 10507–10516
https://doi.org/10.1021/nn503884z
176 S Y Lee , S H Kim , H Hwang , J Y Sim , S M Yang . Controlled pixelation of inverse opaline structures towards reflection-mode displays. Advanced Materials, 2014, 26(15): 2391–2397
https://doi.org/10.1002/adma.201304654
177 T Sakanoue , M Mizukami , S Oku , Y Yoshimura , M Abiko , S Tokito . Fluorosurfactant-assisted photolithography for patterning of perfluoropolymers and solution-processed organic semiconductors for printed displays. Applied Physics Express, 2014, 7(10): 101602
https://doi.org/10.7567/APEX.7.101602
178 K L Xia , W Q Wu , M J Zhu , X Y Shen , Z Yin , H M Wang , S Li , M C Zhang , H M Wang , H J Lu , A L Pan , C F Pan , Y Y Zhang . CVD growth of perovskite/graphene films for high-performance flexible image sensor. Science Bulletin, 2020, 65(5): 343–349
https://doi.org/10.1016/j.scib.2019.12.015
179 A J J M van Breemen , R Ollearo , S Shanmugam , B Peeters , L C J M Peters , R L van de Ketterij , I Katsouras , H B Akkerman , C H Frijters , F Di Giacomo , S Veenstra , R Andriessen , R A J Janssen , E A Meulenkamp , G H Gelinck . A thin and flexible scanner for fingerprints and documents based on metal halide perovskites. Nature Electronics, 2021, 4(11): 818–826
https://doi.org/10.1038/s41928-021-00662-1
180 J Jang , Y G Park , E Cha , S Ji , H Hwang , G G Kim , J Jin , J U Park . 3D heterogeneous device arrays for multiplexed sensing platforms using transfer of perovskites. Advanced Materials, 2021, 33(30): 2101093
https://doi.org/10.1002/adma.202101093
181 L L Gu , S Poddar , Y J Lin , Z H Long , D Q Zhang , Q P Zhang , L Shu , X Qiu , M Kam , A Javey , Z Y Fan . A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature, 2020, 581(7808): 278–282
https://doi.org/10.1038/s41586-020-2285-x
182 H Li , Y Zhang , M Zhou , H Y Ding , L Zhao , T M Jiang , H Y Yang , F Zhao , W Q Chen , Z W Teng , J B Qiu , X Yu , Y M Yang , X H Xu . A solar-blind perovskite scintillator realizing portable X-ray imaging. ACS Energy Letters, 2022, 7(9): 2876–2883
https://doi.org/10.1021/acsenergylett.2c01440
183 C Alfonso , M A Garcia-Gonzalez , E Parrado , J Gil-Rojas , J Ramos-Castro , L Capdevila . Agreement between two photoplethysmography-based wearable devices for monitoring heart rate during different physical activity situations: a new analysis methodology. Scientific Reports, 2022, 12(1): 15448
https://doi.org/10.1038/s41598-022-18356-9
184 C C Li , H M Chen , S C Zhang , W Yang , M Gao , P Y Huang , M Q Wu , Z Y Sun , J Wang , X Wei . Wearable and biocompatible blood oxygen sensor based on heterogeneously integrated lasers on a laser-induced graphene electrode. ACS Applied Electronic Materials, 2022, 4(4): 1583–1591
https://doi.org/10.1021/acsaelm.1c01269
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed