Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng Chin    2009, Vol. 4 Issue (3) : 310-315    https://doi.org/10.1007/s11465-009-0039-4
RESEARCH ARTICLE
Variable stiffness and damping magnetorheological isolator
Yang ZHOU, Xingyu WANG, Xianzhou ZHANG, Weihua LI()
School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, Wollongong NSW 2522, Australia
 Download: PDF(222 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents the development and characterization of a magnetorheological (MR) fluid-based variable stiffness and damping isolator. The prototype of the MR fluid isolator is fabricated, and its dynamic behavior is measured under various applied magnetic fields. The parameters of the model under various magnetic fields are identified, and the dynamic performance of the isolator is evaluated in simulation. Experimental results indicate that both the stiffness and damping capability of the developed MR isolator can be controlled by an external magnetic field.

Keywords magnetorheological (MR) fluid      stiffness      damping      mathematical model      dynamic performance      parameter identification     
Corresponding Author(s): LI Weihua,Email:weihuali@uow.edu.au   
Issue Date: 05 September 2009
 Cite this article:   
Yang ZHOU,Xingyu WANG,Xianzhou ZHANG, et al. Variable stiffness and damping magnetorheological isolator[J]. Front Mech Eng Chin, 2009, 4(3): 310-315.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-009-0039-4
https://academic.hep.com.cn/fme/EN/Y2009/V4/I3/310
Fig.1  Schematic of MR fluid isolator
Fig.2  (a) Lumped model of MR isolator; (b) model simplification
Fig.3  Schematic of MR valve
Fig.4  Experiment setup
Fig.5  Damping force versus displacement at various field strengths (coil currents)
I/AKeff/(N·m–1)Ceff /(Ns·m–1)
055001900
0.175004900
0.2135008988
0.31850014167
0.425000
Tab.1  Identified equivalent stiffness and damping coefficient
1 Sun L, Cai X M, Yang J. Genetic algorithm-based optimum vehicle suspension design using minimum dynamic pavement load as a design criterion. Journal of Sound and Vibration , 2007, 301: 18-27
doi: 10.1016/j.jsv.2006.08.040
2 Daley S, Hatonen J, Owens D H. Active vibration isolation in a “smart spring” mount1 using a repetitive control approach. Control Engineering Practice , 2006, 14: 991-997
doi: 10.1016/j.conengprac.2005.05.010
3 Cronje J M, Heyns P S, Theron N J, Loveday P W. Development of a variable stiffness and damping tunable vibration isolator. Journal of Vibration and Control , 2005, 11: 381-396
doi: 10.1177/1077546305048585
4 Zhu W H, Tryggvason B, Piedboeuf J C. On active acceleration control of vibration isolation systems. Control Engineering Practice , 2006, 14: 863-873
doi: 10.1016/j.conengprac.2005.04.016
5 Anakwa W K N, . Development and control of a prototype pneumatic active suspension system. IEEE Transactions on Education , 1998, 45: 43-49
doi: 10.1109/13.983220
6 Spencer B F, Sain M K, Carlson J D. An experimental study of MR dampers for seismic protection. Smart Materials & Structures , 1998, 7: 693-703
doi: 10.1088/0964-1726/7/5/012
7 Yoshioka H, Ramallo J C, Spencer B F. “Smart” base isolation strategies employing magnetorheological dampers. Journal of Engineering Mechanics , 2002, 128: 5, 540
8 Wang X. Nonlinear behavior of magnetorheological (MR) fluids and MR dampers for vibration control of structural systems. PhD thesis, University of Nevada , 2002
9 Choi S B, . Vibration control of a passenger vehicle featuring magnetorheological engine mounts. International Journal of Vehicle Design , 2003, 33: 2-16
doi: 10.1504/IJVD.2003.003567
10 Yao G Z, . MR damper and its application for semi-active control of vehicle suspension system. Mechatronics , 2002, 12: 963-973
doi: 10.1016/S0957-4158(01)00032-0
11 Choi Y T, Wereley N M, Jeon Y S. Semi-Active vibration isolation using Magnetorheological isolators. Journal of Aircraft , 2005, 42: 1244-1251
doi: 10.2514/1.7919
12 Duan Y F, Ni Y Q, Ko J M. Cable vibration control using magnetorheological dampers. J Intell Mater Syst & Struct , 2006, 17: 321-325
doi: 10.1177/1045389X06054997
13 Kobori T, Takahashi M, Nasu T, Niwa N, Ogasawara K. Seismic response controlled structure with active variable stiffness system. Earthquake Engineering and Structural Dynamics , 1993, 22: 11, 925-941
doi: 10.1002/eqe.4290221102
14 Youn I, Hac A. Semi-active suspension with adaptive capability. Journal of Sound and Vibration , 1995, 180: 3, 475-492
doi: 10.1006/jsvi.1995.0091
15 Liu Y, Matsuhisa H, Utsuno H, Park J G. Vibration control by a variable damping and stiffness system with magnetorheological damper. JSME International Journal, Series C , 2005, 48: 2, 305-310
doi: 10.1299/jsmec.48.305
16 Li W H, Yao G Z, Chen G, Yeo S H, Yap F F. Testing and steady state modeling of a linear MR damper under sinusoidal loading, Smart Mater Struct , 2000, 9: 1, 95-102
doi: 10.1088/0964-1726/9/1/310
[1] Bin NIU, Shijie LI, Rui YANG. Manufacturing and mechanical properties of composite orthotropic Kagome honeycomb using novel modular method[J]. Front. Mech. Eng., 2020, 15(3): 484-495.
[2] Heng LIU, Jie HONG, Dayi ZHANG. Bending and vibration of a discontinuous beam with a curvic coupling under different axial forces[J]. Front. Mech. Eng., 2020, 15(3): 417-429.
[3] Xiaoming YUAN, Jiabing HU, Shijie CHENG. Multi-time scale dynamics in power electronics-dominated power systems[J]. Front. Mech. Eng., 2017, 12(3): 303-311.
[4] Paolo BOSCARIOL,Alessandro GASPARETTO. Vibration suppression of speed-controlled robots with nonlinear control[J]. Front. Mech. Eng., 2016, 11(2): 204-212.
[5] Li LI,Yujin HU,Weiming DENG,Lei LÜ,Zhe DING. Dynamics of structural systems with various frequency-dependent damping models[J]. Front. Mech. Eng., 2015, 10(1): 48-63.
[6] S. SHANKAR GANESH,A.B. KOTESWARA RAO. Stiffness of a 3-degree of freedom translational parallel kinematic machine[J]. Front. Mech. Eng., 2014, 9(3): 233-241.
[7] Z. K. PENG, Z. Q. LANG, G. MENG. Evaluation of transmissibility for a class of nonlinear passive vibration isolators[J]. Front Mech Eng, 2012, 7(4): 401-409.
[8] Jing LU, Yu XIANG, Qiao NI. Dynamic characteristics analysis of active constrained layer damping plate with various boundary conditions[J]. Front Mech Eng, 2011, 6(4): 449-455.
[9] Giuseppe CARBONE. Stiffness analysis and experimental validation of robotic systems[J]. Front Mech Eng, 2011, 6(2): 182-196.
[10] Giuseppe CARBONE, Marco CECCARELLI, . Comparison of indices for stiffness performance evaluation[J]. Front. Mech. Eng., 2010, 5(3): 270-278.
[11] Yancheng LI, Jianchun LI, Bijan SAMALI, Jiong WANG, . Design considerations and experimental studies on semi-active smart pin joint[J]. Front. Mech. Eng., 2009, 4(4): 363-370.
[12] Feng HU, Bo WU, Youmin HU, Tielin SHI. Identification of dynamic stiffness matrix of bearing joint region[J]. Front Mech Eng Chin, 2009, 4(3): 289-299.
[13] CHEN Xuedong, LI Zhixin. Air-bearing position optimization based on dynamic characteristics of ultra-precision linear stages[J]. Front. Mech. Eng., 2008, 3(4): 400-407.
[14] WANG Meixia, LIU Cunfang, ZHOU Qiangtai. Simulation on refrigerant flow in adiabatic capillary tube[J]. Front. Mech. Eng., 2008, 3(3): 332-336.
[15] DONG Mingming, HUANG Hua, GU Lian. Design of damping valve for vehicle hydro pneumatic suspension[J]. Front. Mech. Eng., 2008, 3(1): 97-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed