Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng Chin    2009, Vol. 4 Issue (3) : 345-349    https://doi.org/10.1007/s11465-009-0050-9
RESEARCH ARTICLE
Microstructure and electrical properties of NaNbO3-BaTiO3 lead-free piezoelectric ceramics
Shihui XIE(), Kongjun ZHU, Jinhao QIU, Hua GUO
Aeronautic Key Laboratory for Smart Materials & Structures, Nanjing University of Aeronautics & Astronautics, Nanjing, 210016, China
 Download: PDF(211 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lead-free piezoelectric ceramics (1-x)NaNbO3-xBaTiO3 have been fabricated by a traditional ceramic sintering technique. The effects of BaTiO3 (BT) synthesized by hydrothermal method on crystal structure, density, dielectric, piezoelectric, and electromechanical properties were investigated. Results show that the phase structure transforms from the orthorhombic phase to the tetragonal phase with the increase of the content of BT, and the two phases co-exist when 0.08<x≤0.10. However, the optimum composition for (1-x)NaNbO3-xBaTiO3 ceramics is 0.90NaNbO3-0.10BaTiO3. The 0.90NaNbO3-0.10BaTiO3 ceramics sintered at 1250°C have higher properties: piezoelectric constant d33 of 120 pC/N, dielectric constant ?r of 718, planar electromechanical coupling factor kp of 24%, planar frequency Nd of 3 MHz·mm, and the mechanical quality factor Qm of 138, respectively. The results show that the (1-x)NaNbO3-xBaTiO3 ceramics is one of the promising lead-free materials for high-frequency applications.

Keywords Lead-free piezoelectric ceramics      NaNbO3-BaTiO3      piezoelectricity      ceramics      crystal structure      microstructure     
Corresponding Author(s): XIE Shihui,Email:xshahnu@126.com   
Issue Date: 05 September 2009
 Cite this article:   
Shihui XIE,Kongjun ZHU,Jinhao QIU, et al. Microstructure and electrical properties of NaNbO3-BaTiO3 lead-free piezoelectric ceramics[J]. Front Mech Eng Chin, 2009, 4(3): 345-349.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-009-0050-9
https://academic.hep.com.cn/fme/EN/Y2009/V4/I3/345
Fig.1  XRD patterns of (1-)NaNbO-xBaTiO ceramics in ranges of 2. (a) From 20° to 60°; (b) from 20° to 26°; (c) from 41° to 51°
Fig.2  SEM micrographs of the fracture surface of 0.88NaNbO-0.12BaTiO ceramics with different sintering temperatures (a) =1200°C, (b) =1225°C, (c) =1250°C, (d) =1275°C, (e) =1300°C
Fig.3  Relative density of (1-)NaNbO-BaTiO
Fig.4  Dependence of and on content of BaTiO
Fig.5  Variations in , , and value of (1-)NaNbO-BaTiO
Fig.6  P-E hysteresis loops of (1-)NaNbO-BaTiO ceramics with different sintered at 1250°C
1 Matsubara M, Yamaguchi T. Processing and piezoelectric properties of lead-free (K,Na)(Nb,Ta)O3 ceramics. J Am Ceram Soc , 2005, 88 (5): 1190-1196
doi: 10.1111/j.1551-2916.2005.00229.x
2 Zhang S J, Xia R. Characterization of lead free (Na0.5K0.5)NbO3-LiSbO3 piezoceramic. Solid State Communications , 2007, 141: 675-679
doi: 10.1016/j.ssc.2007.01.007
3 Zhang S J, Xia R. Lead-free piezoelectric ceramics vs. PZT. J. Electroceram ,
doi:10.1007/s10832-007-9056-z, 2007
doi: 10.1007/s10832–007–9056–z pmid:10.1007/s10832-007-9056-z" target="blank">
doi: 10.1007/s10832-007-9056-z
4 Ahn C W, Song H C. Effect of MnO2 on the piezoelectric properties of (1-x)(Na0.5K0.5)NbO3-xBaTiO3 ceramics. Japanese Journal of Applied Physics , 2005, 44: 1361-1364
doi: 10.1143/JJAP.44.L1361
5 Zhi Y, Chen A. Piezoelectric and strain properties of Ba(Ti1-xZrx)O3 ceramics. Journal of Applied Physics , 2002, 92(3): 1489-1493
doi: 10.1063/1.1487435
6 Lin D, Kowk K W. Structure and electrical properties of (Na0.5K0.5)NbO3-LiSbO3 lead-free piezoelectric ceramics. Journal of Applied Physics , 2007, 101: 074111–(1–6)
7 Chang R C, Chu S Y. The effect of sintering temperature on the properties of (Na0.5K0.5)NbO3-CaTiO3 based lead-free piezoelectric ceramics. Sensors and Actuators A , 2007, 138: 355-360
doi: 10.1016/j.sna.2007.05.020
8 Du H L, Tang F S. Influence of sintering temperature on piezoelectric Properties of (Na0.5K0.5)NbO3-LiNbO3 lead-free piezoelectric ceramics. Materials Research Bulletin , 2007, 42: 1594-1601
doi: 10.1016/j.materresbull.2006.11.043
9 Hagh N M, Jadidian B. Property-processing Relationship in Lead-Free (K,Na,Li)NbO3-solid solution system. J Electroceram , 2007, 18: 339-346
doi: 10.1007/s10832-007-9171-x
10 Satio Y, Takao H. Lead-Free Piezoceramics. Nature , 2004, 432(4): 84-87
11 Matsubara M, Yamaguchi T. Synthesis and characterization of (Na0.5K0.5)(Nb0.7Ta0.3)O3 piezoelectric ceramics sintered with sintering aid K5.4Cu1.3Ta10O29. Japanese Journal of Applied Physics , 2005, 44(9) : 6618-6623
doi: 10.1143/JJAP.44.6618
12 Guo Y P, Kakimoto K I. (Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics. Materials Letters , 2005, 59: 241-244
doi: 10.1016/j.matlet.2004.07.057
13 Hollenstein E, Davis M. Piezoelectric properties of Li- and Ta-modified (Na0.5K0.5)NbO3 ceramics. Applied Physics Letters , 2005, 87: 182905–(1–3)
14 Guo Y P, Kakimoto K. Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3-SrTiO3 ceramics. Solid State Communications , 2004, 129: 279-284
doi: 10.1016/j.ssc.2003.10.026
15 Chang Y F, Yang Z P. Dielectric and piezoelectric properties of Alkaline-earth Titanate doped (Na0.5K0.5)NbO3 ceramics. Materials Letters , 2007, 61: 785-789
doi: 10.1016/j.matlet.2006.05.065
16 Jiao G C, Fan H Q. Structure and piezoelectric properties of Cu-doped Potassium Sodium Tantalite Niobate ceramics. Materials Letters , 2007, 61: 4185-4187
doi: 10.1016/j.matlet.2007.01.051
17 Wang R, Xie R J. Enhanced piezoelectricity around the tetragonal/orthorhombic morphotropic phase boundary in (K,Na)NbO3-ATiO3 solid solution. J Electroceram ,
doi:10.1007/s10832-007-9136-0, 2007
doi: 10.1007/s10832-007-9136-0
18 Zeng J T, Kwok K W. Ferroelectric and Piezoelectric Properties of Na1-xBaxNb1-xTixO3 Ceramics. J Am Ceram Soc , 2006 , 89: 2828-2832
19 Aoyagi R, Matsuoka T. Piezoelectric properties of NaNbO3-BaTiO3 ceramics. In: Sixteenth IEEE International Symposium. Applications of Ferroelectrics, ISAF , 2007, 677-678
20 Park S H, Ahn C W. Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Japanese Journal of Applied Physics , 2004, 43(8B): 1072-1074
doi: 10.1143/JJAP.43.L1072
[1] Jiadong DENG, Claus B. W. PEDERSEN, Wei CHEN. Connected morphable components-based multiscale topology optimization[J]. Front. Mech. Eng., 2019, 14(2): 129-140.
[2] B. J. WANG, D. K. XU, S. D. WANG, E. H. HAN. Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review[J]. Front. Mech. Eng., 2019, 14(1): 113-127.
[3] Xiangyu WANG, Chuanzhen HUANG, Bin ZOU, Guoliang LIU, Hongtao ZHU, Jun WANG. Experimental study of surface integrity and fatigue life in the face milling of Inconel 718[J]. Front. Mech. Eng., 2018, 13(2): 243-250.
[4] Tianfeng ZHOU,Xiaohua LIU,Zhiqiang LIANG,Yang LIU,Jiaqing XIE,Xibin WANG. Recent advancements in optical microstructure fabrication through glass molding process[J]. Front. Mech. Eng., 2017, 12(1): 46-65.
[5] Bo SONG,Xiao ZHAO,Shuai LI,Changjun HAN,Qingsong WEI,Shifeng WEN,Jie LIU,Yusheng SHI. Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review[J]. Front. Mech. Eng., 2015, 10(2): 111-125.
[6] Guanglan LIAO, Haibo ZUO, Xuan JIANG, Xuefeng YANG, Tielin SHI. Investigations on color variations of Morpho rhetenor butterfly wing scales[J]. Front Mech Eng, 2012, 7(4): 394-400.
[7] Kirsten BOBZIN, Lidong ZHAO, Nils KOPP, Thomas WARDA. Feasibility study of plasma sprayed Al2O3 coatings as diffusion barrier on CFC components[J]. Front Mech Eng, 2012, 7(4): 371-375.
[8] Kirsten BOBZIN, Lidong ZHAO, Thomas SCHLAEFER, Thomas WARDA. Development of oxide based diffusion barrier coatings for CFC components applied in modern furnaces[J]. Front Mech Eng, 2011, 6(4): 392-396.
[9] Wenbin LI, Hiromasa SAKAI, Shota HARADA, Yasushi TAKASE, Nao-Aki NODA. Separation mechanism for double cylinder with shrink fitting system used for ceramics conveying rollers[J]. Front Mech Eng, 2011, 6(3): 277-286.
[10] Jianhui ZHANG, Fang YE, Onuki AKIYOSHI, . Machine of testing the ceramic&#8217;s bending strength properties at high temperature and ultra-low speed[J]. Front. Mech. Eng., 2010, 5(3): 289-293.
[11] Jianhui ZHANG, Jun HUANG, Xiaoqi HU, Qixiao XI, . Novel piezoelectric pump with &#8220;E&#8221;-shaped valve found from sub-experiments[J]. Front. Mech. Eng., 2010, 5(2): 212-218.
[12] Jun WANG. Depth of cut models for multipass abrasive waterjet cutting of alumina ceramics with nozzle oscillation[J]. Front. Mech. Eng., 2010, 5(1): 19-32.
[13] Lidong ZHAO, Pia KUTSCHMANN, Binyou FU, Dingyong HE. Development of a new wear resistant coating by arc spraying of a steel-based cored wire[J]. Front Mech Eng Chin, 2009, 4(1): 1-4.
[14] XU Zhongming, HUANG Ping. Calculating frictional force with considering material microstructure and potential on contact surfaces[J]. Front. Mech. Eng., 2007, 2(4): 474-477.
[15] SHAN Jiguo, DONG Wei, TAN Wenda, ZHANG Di, REN Jialie. Dilution rate and microstructure of TIG arc Ni-Al powder surfacing layer[J]. Front. Mech. Eng., 2007, 2(1): 20-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed