Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng Chin    2009, Vol. 4 Issue (3) : 350-354    https://doi.org/10.1007/s11465-009-0056-3
RESEARCH ARTICLE
Polymer nanocomposites for microactuation and magneto-electric transduction
Kaori YUSE(), Benoit GUIFFARD, Rabah BELOUADAH, Lionel PETIT, Laurence SEVEYRAT, Daniel GUYOMAR
Laboratoire de Génie Electrique et Ferroélectricité (LGEF), INSA Lyon,Bat. Gustave Ferrié, 69621 Villeurbanne Cedex, France
 Download: PDF(132 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the last decade, electroactive polymers have attracted much attention especially because of their very actuating capabilities. Large strain is experimentally observed, but under quite high electrical field, which can be a severe drawback for actuating applications. First part of the present paper is concerned with the reduction of applied field onto electroactive polymer films to get a given strain level. Polyurethane (PU) films filled with carbon black (CB) nanoparticles exhibit relatively high strain level under a field of only 12.5 kV/mm. The simple easy-to-make method solution cast method was applied. Even though the generated stress level is still quite low, the present work shows high strain level under quite low field appliance by easy manufacturing, lightweight, and flexible polymer film. Besides, another interest of the present paper is in magneto-elasto-electric effect of a polymer film filled with some magnetic nano particles. Films filled with nonpiezoelectric but with magnetite particles has still short history. With the use of magneto materials, a large magnetic DC bias field is generally required, and it causes big problem on application. The films filled with some magnetite nanoparticles (Fe3O4 and Nickel) are fabricated then examined. It is clearly demonstrated that our films do not require any DC bias. Although linear polarization value is relatively small, the first step of the studies on magnetite nano-filled film is presented.

Keywords electroactive polymers      carbon filling      actuator      nanocarbon      electromechanical coupling      dielectric polymer actuators      polymer actuators      microactuation      magneto-electric effect     
Corresponding Author(s): YUSE Kaori,Email:Kaori.yuse@insa-lyon.fr   
Issue Date: 05 September 2009
 Cite this article:   
Kaori YUSE,Benoit GUIFFARD,Rabah BELOUADAH, et al. Polymer nanocomposites for microactuation and magneto-electric transduction[J]. Front Mech Eng Chin, 2009, 4(3): 350-354.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-009-0056-3
https://academic.hep.com.cn/fme/EN/Y2009/V4/I3/350
Fig.1  Configuration of the film samples
Fig.2  Schematic diagram of the ME measurement system
pure PURCB / PUR
max. strain8 %12 %
max. stress0.14 MPa0.14 MPa
Response speedmsms
Driven field8 V/μm8 V/μm
Tab.1  Main results of pure PUR and CB/PUR films
Fig.3  DC bias voltage dependence of the measured magnetic bias field and AC field magnitude
Fig.4  DC bias field dependence of the output ground current magnitude of pure PU and filled nanocomposite films
Fig.5  AC field dependence of the experimental ME current amplitude of unbiased filled nanocomposite films
1 Su, J, Harrison J S, Clair S T. Novel polymeric elastomers for actuation. Proc of 12th ISAF , 2000, 2: 811-814
2 Mirfakhrai T, Madden J D W, Baughman R H. Polymer artificial muscles. Materialstoday , 2007, 10(4): 30-38
doi: 10.1016/S1369-7021(07)70048-2
3 Pelrine R E, Kornbluh R D, Joseph J P. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A , 1998, 64: 77-85
doi: 10.1016/S0924-4247(97)01657-9
4 Ryu J, Priya S, Uchino K, Kim H E. Electroceram, 2002, 8(107)
doi: 10.1023/A:1020599728432
5 Ryu J, Carazo A V, Uchino K, Kim H E. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn J Appl Phys , Part I, 2001, 40(8): 4948–4951
6 Fiebig M. Revival of the magnetoelectric effect. J Phys D: Appl Phys. , 2005, 38(8), 123–152
doi: 10.1088/0022-3727/38/8/R01
7 Dong S, Zhai J, Bai F, Li J F, Viehland D. J Magnetostrictive and magnetoelectric behavior of Fe-20 at. % Ga/ Pb(Zr,Ti)O3 laminates.J Appl Phys , 2005, 97, 103902
doi: 10.1063/1.1899247
8 Bunget I, Reatchi V. Magnetoelectric effect in the heterogeneous system NiZn ferrite-PZT ceramic. Phys Stat , 1981, (Sol 63): K55–K57
9 Nersessian N, Or S W, Carman G P. Magnetoelectric behavior of Terfenol-D composite and lead zirconate titanate ceramic laminates. IEEE Trans Magn , 2004, 40(4): 2646–2648
doi: 10.1109/TMAG.2004.832171
10 Cai N, Zhai J, Nan C W, Lin Y, Shi Z. Dielectric, ferroelectric, magnetic, and magnetoelectric properties of multiferroic laminated composites. Phys Rev , 2003, B 68(22): 224103
11 Lin Y, Cai N, Zhai J, Liu G, Nan C W. Giant magnetoelectric effect in multiferroic laminated composites. Phys Rev , 2005, B 72(1): 012405
12 Chang K S, Aronova M, Takeuchi I, Lofland S E, Simpers J H, Chang H. Multimode quantitative scanning microwave microscopy of in situ grown epitaxial Ba1–xSrxTiO3 composition spreads. Appl Phys Lett , 2001, 79(26): 4411–4413
doi: 10.1063/1.1427438
13 Srinivasan G, Rasmussen E T, Hayes R. Magnetoelectric effects in ferrite-lead zirconate titanate layered composites: the influence of zinc substitution in ferrites. Phys Rev , 2003, B 67: 014418
[1] Mariana MORETTI, Emílio C. N. SILVA. Topology optimization of piezoelectric bi-material actuators with velocity feedback control[J]. Front. Mech. Eng., 2019, 14(2): 190-200.
[2] Meiju YANG,Chunxia LI,Guoying GU,Limin ZHU. A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator[J]. Front. Mech. Eng., 2015, 10(1): 37-42.
[3] Ruizhou WANG, Xianmin ZHANG. Preload characteristics identification of the piezoelectric-actuated 1-DOF compliant nanopositioning platform[J]. Front. Mech. Eng., 2015, 10(1): 20-36.
[4] G. BORCHERT, C. L?CHTE, G. CARBONE, A. RAATZ. A modular design kit for task-adaptable low-cost robots based on BaPaMan design[J]. Front Mech Eng, 2013, 8(1): 33-41.
[5] Mahdi RASOULI, Andy Prima KENCANA, Van An HUYNH, Eng Kiat TING, Joshua Chong Yue LAI, Kai Juan WONG, Su Lim TAN, Soo Jay PHEE. Ingestible wireless capsules for enhanced diagnostic inspection of gastrointestinal tract[J]. Front Mech Eng, 2011, 6(1): 40-44.
[6] Lin LIN, Mahdi RASOULI, Andy Prima KENCANA, Su Lim TAN, Kai Juan WONG, Khek Yu HO, Soo Jay PHEE. Capsule endoscopy—A mechatronics perspective[J]. Front Mech Eng, 2011, 6(1): 33-39.
[7] Hanmin PENG, Yao HUI, Qingjun DING, Huafeng LI, Chunsheng ZHAO, . IPMC gripper static analysis based on finite element analysis[J]. Front. Mech. Eng., 2010, 5(2): 204-211.
[8] Xinhua WANG, Shuwen SUN, Jian ZHEN, Qianyi YA, Deguo WANG, . Signal separation technology for diphase opposition giant magnetostrictive self-sensing actuator[J]. Front. Mech. Eng., 2010, 5(2): 176-183.
[9] Dan WU, Zhichun YANG, Hao SUN, . Vibration control efficiency of piezoelectric shunt damping system[J]. Front. Mech. Eng., 2009, 4(4): 441-446.
[10] Qi CHEN, Ke XIONG, Kan BIAN, Ning JIN, Bangfeng WANG, . Preparation and performance of soft actuator based on IPMC with silver electrodes[J]. Front. Mech. Eng., 2009, 4(4): 436-440.
[11] Ning JIN, Bangfeng WANG, Kan BIAN, Qi CHEN, Ke XIONG, . Performance of ionic polymer-metal composite (IPMC) with different surface roughening methods[J]. Front. Mech. Eng., 2009, 4(4): 430-435.
[12] Junwu KAN, Kehong TANG, Chenghui SHAO, Guoren ZHU, Taijiang PENG, . Efficiency characteristics of piezostack pump for linear actuators[J]. Front. Mech. Eng., 2009, 4(4): 407-414.
[13] Hanmin PENG, Qingjun Ding, Huafeng LI. Fabrication of ionic polymer-metal composites (IPMCs) and robot design[J]. Front Mech Eng Chin, 2009, 4(3): 332-338.
[14] Jinhao QIU, Hongli JI, Kongjun ZHU. Semi-active vibration control using piezoelectric actuators in smart structures[J]. Front Mech Eng Chin, 2009, 4(3): 242-251.
[15] ZHAO Chunsheng, ZHANG Jiantao, ZHANG Jianhui, JIN Jiamei. Development and application prospects of piezoelectric precision driving technology[J]. Front. Mech. Eng., 2008, 3(2): 119-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed