Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng Chin    2009, Vol. 4 Issue (3) : 264-275    https://doi.org/10.1007/s11465-009-0060-7
RESEARCH ARTICLE
Integrated design of legged mechatronic system
Chin-Yin CHEN1(), I-Ming CHEN2, Chi-Cheng CHENG1
1. Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, China; 2. School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
 Download: PDF(432 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents a system based on the integrated design and experiment for a one degree-of-freedom (DOF) legged mechatronic system (LMTS). A six-bar linkage mechanism, which is derived from a four-bar linkage with a symmetrical coupler point and pantograph into one, is designed, and common controllers are used to control the velocity and position loops.

For system-based dynamic optimization, the design for control (DFC) approach is used to integrate the structure and control for improving dynamic performance with reduced control torque.

Finally, for a rapid 3D graphical based implementation of the system, high-level computer-aided rapid system integration (CARSI) technology is used to integrate the structure design, controller design, and system implementation into the design and analytical software environment based on Pro/engineer, XML syntax, Simmechanics, and Simulink. Thus, the development time for the LMTS is reduced.

Keywords integrated design      design for control      legged mechatronic system      computer aided rapid system integration     
Corresponding Author(s): CHEN Chin-Yin,Email:michen@ntu.edu.sg   
Issue Date: 05 September 2009
 Cite this article:   
Chin-Yin CHEN,I-Ming CHEN,Chi-Cheng CHENG. Integrated design of legged mechatronic system[J]. Front Mech Eng Chin, 2009, 4(3): 264-275.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-009-0060-7
https://academic.hep.com.cn/fme/EN/Y2009/V4/I3/264
Fig.1  Skills for MT system design
Fig.2  Graphical model-based implementation: flow and representative tools
Fig.3  Ideal foot trajectory
Fig.4  Symmetrical coupler curves. (a) When input link at 0°; (b) when input link at 180°
Fig.5  Symmetrical profiles. (a) Eight type profiles; (b) two reversal points; (c) two intersection points; (d) curve with long stride; (e) curve with large height
Fig.6  Traditional pantograph
Fig.7  Four-bar linkage with pantograph. (a) Embedded type (six-bar); (b) external type (eight-bar)
parametersvalues or constrains
stride length/cm25
foot-path height/cm>3
Speed/(steps/s)2
Tab.1  Design specifications
parametersDTCDFCVar. %
structure parameters
A0B0 ˉ/cm12.812.8
A0C ˉ/cm2.62.6
B0D ˉ=EF ˉ/cm88
B0E ˉ=DF ˉ/cm30.830.8
mass of A0C ˉ/kg0.0500.08060
mass of B0D ˉ/kg0.0350.07100
mass of B0E ˉ/kg0.1340.134
mass of ΔCDF/kg0.3680.215-41.5
mass of ΔEFG/kg0.3160.177-44.0
r2(cm) /δ2 (°)1.3 / 00 / 0– / –
r3(cm) /δ3 (°)16.0 / 35.614.6 / 38.0-8.6 / 6.3
r4(cm) /δ4 (°)4 / 00 / 0– / –
r5(cm) /δ5 (°)12.5 / 42.011.6 / 36.6-7.5 / -13
r6(cm) /δ6 (°)15.4 / 015.4 /0– / –
α/(°)51.251.2
n3.83.8
? /(°)128.8128.8
controller parameters
Kp4.33.5-18.6
Ki4000480020
Kpp15018020
Max |τ|(N-m) without acc/dec (0.5 step/s)0.140.12-10
Max |τ|(N-m) without acc/dec (2 step/s)0.50.2-60
Tab.2  Integrated design results
Fig.8  Gait profile. (a) Embedded (with skew angle); (b) end effect
Fig.9  Dynamic model of linkage for a leg system
Fig.10  Cascade servo controller of a walking machine
Fig.11  Integrated design of MT system. (a) DTC method; (b) DFC approach
Fig.12  Graphical model translation step
Fig.13  Control torque for DTC method
Fig.14  Control torque for DFC method
Fig.15  Add-in modules for I-8438 in Simulink
Fig.16  Results for experimentation and simulation
1 Manuel A, Pablo Gonzalez de Santos. Climbing and Walking Robots . Berlin: Springer, 2005
2 Tokhi MO, Hossain M A, Virk G S. Climbing and Walking Robots. Berlin: Springer, 2006
3 Sardain P, Rostami M, Bessonnet G. An Anthropomorphic biped robot: dynamic concepts and technological design. IEEE Transactions on System, Man, and Cybernetics—PART A: Systems and Humans , 1998, 28 (6): 823-838
4 Shieh W B, Tsai L W, Azarm S. Design and optimization of a one-degree-of freedom six-bar leg mechanism for a walking machine. Journal of Robotic System , 1997, 14 (12): 871-880
doi: 10.1002/(SICI)1097-4563(199712)14:12<871::AID-ROB4>3.0.CO;2-R
5 Chen Y J. Mechanism design of an 8-link type biped walking machine with auxiliary wheels. Master Thesis, National Cheng Kung Univ , 2004
6 Ottaviano E, Lanni C, Ceccarelli M. Numerical and Experimental Analysis of a Pantograph-Leg with a Fully-Rorative Actuating Mechanism. In: Proc of the 11th World Congress in Mechanism and Machine Science, Tianjin, China , 2004
7 Zhang W, Li Q, Guo S. Integrated design of mechanical structure and control algorithm for a programmable four-bar linkage. IEEE/ASME Transactions on Mechatronics , 1999, 4 (4): 354-362
doi: 10.1109/3516.809514
8 Li Q, Zhang W J, Chen L. Design for control-a concurrent engineering approach for MT systems design. IEEE/ASME Trans on Mech , 2001, 6 (2): 161-169
9 Amerongen J van. Mechatronic design. Journal of Mechatronics , 2003, 13 (10): 1045-1066
doi: 10.1016/S0957-4158(03)00042-4
10 Amerongen J van, Breedveld P C. Modelling of physical systems for the design and control of mechatronic systems (IFAC professional brief). Annual Reviews in Control , 2003, 27: 87-117
doi: 10.1016/S1367-5788(03)00010-5
11 Wu F X, Zhang W J, Li Q, Ouyang P R. Integrated design and PD control of high-speed closed-loop mechanisms. ASME J Dyn Syst, Meas, Control , 2002, 124: 522-528
12 Yan H S, Soong R C. Kinematic and dynamic design of four-bar linkages by links counterweighing with variable input speed. Mech Mach Theory , 2001,β36 (9): 1051-1071
doi: 10.1016/S0094-114X(01)00032-5
13 Yang J, Han S, Cho J, Kim B, Lee H Y. An XML-based macro data representation for a parametric CAD model exchange. Computer-Aided Design and Applications , 2004, 1 (1-4): 153-162
14 Glesner M, Kirschbaum A, Renner F M, Voss B. State-of-the-art in rapid prototyping for MT systems. MTs , 2002,β12 (8): 987-998
15 Bucher R, Balemi S. Rapid controller prototyping with Matlab/Simulink and Linux. Control Eng Prac ,2006,β14 (2): 185-192
doi: 10.1016/j.conengprac.2004.09.009
16 Deppe M, Zanella M, Robrecht M, Hardt W. Rapid prototyping of real-time control laws for complex MT systems: a case study. Journal of Systems and Software , 2004,β70 (3): 263-274
doi: 10.1016/S0164-1212(03)00073-6
17 Sun I. C. The Integration of MATLAB and embedded controller for control application. Master Thesis, National Sun Yat-Sen Univ , 2004
18 ICP DAS Co. User manual of I8438/8838 Matlab embedded control
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed