Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2010, Vol. 5 Issue (2) : 242-246    https://doi.org/10.1007/s11465-010-0016-y
Research articles
Improving the performances of ultrasonic motors using intermittent contact scheme
Jiamei JIN,Jianhui ZHANG,Fu QIAN,Zhenfeng PAN,
Precision Drive Laboratory, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 China;
 Download: PDF(195 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Most ultrasonic motors operate in intermittent contact scheme. Their stators drive the rotors (or sliders) when the stators contact the rotors, and the rotors (or sliders) move under an inertia force when the stators and the rotors are separated. The duty cycle of the contact and the “flight” manages motors’ output performance. To obtain a large output force or output velocity, this paper proposes a concept using the alternative work of a multi-stator or the multi-driving end of a single stator. The method can avoid larger noise, poor efficiency, and lifetime of motors. A novel linear ultrasonic motor using the alternative work of the multi-driving end of a single stator was fabricated and investigated experimentally. The traveling speed without load of the slider is 88 mm/s, and the maximum load is 0.32 N.
Keywords ultrasonic motor      intermittent contact      alternative work      
Issue Date: 05 June 2010
 Cite this article:   
Jiamei JIN,Fu QIAN,Jianhui ZHANG, et al. Improving the performances of ultrasonic motors using intermittent contact scheme[J]. Front. Mech. Eng., 2010, 5(2): 242-246.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-010-0016-y
https://academic.hep.com.cn/fme/EN/Y2010/V5/I2/242
Wallaschek J. Contact mechanics of piezoelectric ultrasonic motors. Smart Mater Struct, 1998, 7(3): 369–381

doi: 10.1088/0964-1726/7/3/011
Zu J K, Zhao C S. Research on resonance and antiresonance states of free stator of travelingwave ultrasonic motors. Chinese Journal of Acoustics, 2004, 23(4): 289–301 (in Chinese)
Kuribayashi M, Ueha S, Mori E. Excitation conditions of flexural travelingwaves for a reversible ultrasonic linear motor. Journal of the Acoustic Society of America, 1985, 77: 1431–1435

doi: 10.1121/1.392037
Jin J M, Zhang J H, Zhao C S. Rotary ultrasonic motor driven by gyratorymotion of an annulus stator. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(6): 747–752 (in Chinese)
Jin J M, Zhao C S. A novel traveling wave ultrasonic motor using a bar shaped transducer. Journal of Wuhan University of Technology-Mater, Sci ed, 2008, 23(6): 961–963
Aoyagi M, Nakano Y, Tomikawa Y. Rod-type ultrasonic motorusing 2 degenerate 2nd flexural vibration modes and characteristicconsideration using its equivalent-circuit expression. Japanese Journal of Applied Physics Part 1–Regular Papers Short Notes& Review Papers, 1995, 34(9B): 5292–5297
Zhu H, Dong Y H, Ma X L, Zhao C S. New rod-shaped ultrasonic micromotor and its driving principle. Transactions of Nanjing University of Aeronautics& Astronautics, 2006, 23(1): 15–19
Ueha S, Tomikawa Y. Ultrasonic motors. Oxford Science, Oxford, 1993, 4
Sashida T, Kenjo T. An introduction to ultrasonic motors. Oxford Science, Oxford, 1993, 6
Nakamura K, Kurosawa M, Ueha S. Characteristics of a hybridtransducer-type ultrasonic motor. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 1991, 38(3): 189–193

doi: 10.1109/58.79602
Takano T, Tomikawa Y. Characteristics of the ultrasonic linear motor using radial and nonaxisymmetric vibrationmodes of an annular plate. Jpn J Appl Phys, 1995, 34(1): 5288–5291

doi: 10.1143/JJAP.34.5288
Iijima T. Ultrasonic motor using flexual standing wave. Japanese Journal of Applied Physics, 1987, 23(Suppl 1): 191–193
Chen X, Kusakabe C, Tomikawa Y. Rotor displacement of theultrasonic motor having an angular displacement self-correction function. Japanese Journal of Applied Physics, 1993, 32(1): 4198–4201

doi: 10.1143/JJAP.32.4198
Jiamei J, Zhao C S. Characteristic matching between stator and rotor in standing-wave-type ultrasonicmotors. J Electroceram, 2008, 20: 197–202

doi: 10.1007/s10832-007-9134-2
Hemsel T, Mracek M, Wallaschek J, Vasiljev P. A novel approach for high power ultrasonic linear motors. IEEE Ultrasonics Symposium, 2004, (1―3): 1161–1164
[1] Ning CHEN, Jieji ZHENG, Xianliang JIANG, Shixun FAN, Dapeng FAN. Analysis and control of micro-stepping characteristics of ultrasonic motor[J]. Front. Mech. Eng., 2020, 15(4): 585-599.
[2] Jiamei JIN, Chunsheng ZHAO. Linear ultrasonic motor using quadrate plate transducer[J]. Front Mech Eng Chin, 2009, 4(1): 88-91.
[3] ZHANG Hanlei, SHI Yunlai, ZHAO Chunsheng. Precision control system of two-DOF stage with linear ultrasonic motor[J]. Front. Mech. Eng., 2008, 3(4): 421-425.
[4] ZHANG Jiantao, ZHU Hua, ZHAO Chunsheng. Modal disturbance investigation of rod-shaped ultrasonic motor using bending vibrations[J]. Front. Mech. Eng., 2008, 3(3): 343-347.
[5] SHI Shengjun, CHEN Weishan, LIU Junkao, ZHAO Xuetao. Ultrasonic linear motor using the L-B mode Langevin transducer with an exponential horn[J]. Front. Mech. Eng., 2008, 3(2): 212-217.
[6] JIN Jiamei, ZHAO Chunsheng. Bi-modes alternation stepping ultrasonic motors[J]. Front. Mech. Eng., 2008, 3(1): 101-105.
[7] ZHU Hua, CHEN Chao, ZHAO Chunsheng. Investigation on a cylindrical ultrasonic micromotor[J]. Front. Mech. Eng., 2007, 2(4): 394-398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed