Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2010, Vol. 5 Issue (3) : 294-301    https://doi.org/10.1007/s11465-010-0019-8
Research articles
Modeling of large-deflection links for compliant mechanisms
Zhonglei FENG,Yueqing YU,Wenjing WANG,
College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing 100124, China;
 Download: PDF(361 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The traditional pseudo-rigid-body model (PRBM) has one degree of freedom (DOF) and performs a good simulation to the tip locus of flexible links for compliant mechanisms on the basis of a parametric approximation method. In this study, a new approach of a two-DOF PRBM is proposed to simulate both the tip locus and tip deflection angle of large-deflection links for compliant mechanisms on the basis of the angular deflection approximation technique. A linear regression for the spring stiffness coefficient of the 2R PRBM using the optimization technique is presented. The advantage of the new model is well illustrated through a numerical comparison between the 1R and the 2R PRBM.
Keywords compliant mechanism      pseudo-rigid-body model (PRBM)      large-deflection link      angular deflection approximation      
Issue Date: 05 September 2010
 Cite this article:   
Zhonglei FENG,Yueqing YU,Wenjing WANG. Modeling of large-deflection links for compliant mechanisms[J]. Front. Mech. Eng., 2010, 5(3): 294-301.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-010-0019-8
https://academic.hep.com.cn/fme/EN/Y2010/V5/I3/294
Howell L L. Compliant Mechanisms. NewYork: John Wiley & Sons, 2001
Jensen B D, Howell L L, Salmon L G. Design of two-link, in-plane,bistable compliant micro-mechanisms. ASME Transactions. Journal of Mechanical Design, 1999, 121(3): 416―423

doi: 10.1115/1.2829477
Kota S, Ananthasuresh G K, Crary G S, Wise K D. Design and fabrication of microelectromechanical systems.ASME Transactions. Journal of MechanicalDesign, 1994, 116(4): 1081―1088

doi: 10.1115/1.2919490
Saxena A, Ananthasuresh G K. On an optimal property of compliant topologies. Structural and Multidisciplinary Optimization, 2000, 19(1): 36―49

doi: 10.1007/s001580050084
Frecker M I, Ananthasuresh G K, Nishiwaki S, Kota S. Topological synthesis of compliant mechanisms using multi-criterionoptimization. ASME Transactions. Journalof Mechanical Design, 1997, 119(1): 238―245

doi: 10.1115/1.2826242
Hetrik J A, Kota S. An energy formulationfor parametric size and shape optimation of compliant mechanisms.ASME Transactions. Journal of MechanicalDesign, 1999, 121: 229―233

doi: 10.1115/1.2829448
Midha A, Howell L L. A method for the design of compliant mechanism with small-lengthflexural pivots. ASME Transactions. Journalof Mechanical Design, 1994, 116(1): 280―289

doi: 10.1115/1.2919359
Howell L L, Midha A. Parametricdeflection approximations for end-loaded, large-deflection beams incompliant mechanisms. ASME Transactions. Journal of Mechanical Design, 1995, 117(1): 156―165

doi: 10.1115/1.2826101
Howell L L, Midha A, Norton T W. Evaluation of equivalent spring stiffnessfor use in a pseudo-rigid-body model of large deflection compliantmechanisms. ASME Transactions. Journalof Mechanical Design, 1996, 118(1): 126―131

doi: 10.1115/1.2826843
Midha A, Howell L L. Parametric deflection approximations for initially curved, large-deflectionbeams in compliant mechanisms. In: Proceedingsof the 1996 ASME Design Engineering Technical Conferences. California: DETC96/MECH, 1996, 1215
Saxena A, Kramer S N. A simple and accurate method for determining large deflections incompliant mechanisms subjected to end forces and moments. Journal of Mechanical Design, 1998, 120(3): 392―400

doi: 10.1115/1.2829164
Lyon S M, Howell L L, Roach G M. Modeling flexible segmentswith force and moment end loads via the pseudo-rigid-body model. In: Proceedings of the ASME Dynamics and ControlDivision. Orlando: Proceedings of the ASME International MechanicalEngineering Congress & Exposition, 2000, 883―890
Saggere L, Kota S. Synthesis ofplanar, compliant four-bar mechanisms for compliant-segment motiongeneration. Journal of Mechanical Design, 2001, 123(4): 535―541

doi: 10.1115/1.1416149
Weisberg S. Applied Linear Regression. 3rded. New York: Wiley Interscience, 2005

doi: 10.1002/0471704091
[1] Boxing WANG, Chunlin ZHOU, Ziheng DUAN, Qichao ZHU, Jun WU, Rong XIONG. Untethered quadrupedal hopping and bounding on a trampoline[J]. Front. Mech. Eng., 2020, 15(2): 181-192.
[2] Junjie ZHAN, Yangjun LUO. Robust topology optimization of hinge-free compliant mechanisms with material uncertainties based on a non-probabilistic field model[J]. Front. Mech. Eng., 2019, 14(2): 201-212.
[3] Guangbo HAO,Haiyang LI,Suzen KEMALCAN,Guimin CHEN,Jingjun YU. Understanding coupled factors that affect the modelling accuracy of typical planar compliant mechanisms[J]. Front. Mech. Eng., 2016, 11(2): 129-134.
[4] Guangbo HAO,Jingjun YU,Haiyang LI. A brief review on nonlinear modeling methods and applications of compliant mechanisms[J]. Front. Mech. Eng., 2016, 11(2): 119-128.
[5] Ruizhou WANG, Xianmin ZHANG. Preload characteristics identification of the piezoelectric-actuated 1-DOF compliant nanopositioning platform[J]. Front. Mech. Eng., 2015, 10(1): 20-36.
[6] Guangbo HAO,Haiyang LI,Xiuyun HE,Xianwen KONG. Conceptual design of compliant translational joints for high-precision applications[J]. Front. Mech. Eng., 2014, 9(4): 331-343.
[7] Michael Yu WANG. Mechanical and geometric advantages in compliant mechanism optimization[J]. Front Mech Eng Chin, 2009, 4(3): 229-241.
[8] WANG Wenjing, YU Yueqing. Analysis of frequency characteristics of compliant mechanisms[J]. Front. Mech. Eng., 2007, 2(3): 267-271.
[9] Shi-kui CHEN, Michael Yu WANG. Conceptual design of compliant mechanisms using level set method[J]. Front. Mech. Eng., 2006, 1(2): 131-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed