Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2011, Vol. 6 Issue (3) : 324-331    https://doi.org/10.1007/s11465-011-0125-2
RESEARCH ARTICLE
Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying
Kirsten BOBZIN1, Nazlim BAGCIVAN1, Lidong ZHAO1, Ivica PETKOVIC1(), Jochen SCHEIN2, Karsten HARTZ-BEHREND2, Stefan KIRNER2, José-Luis MARQUéS2, Günter FORSTER2
1. Surface Engineering Institute, RWTH Aachen University, 52072 Aachen, Germany; 2. Institute of Plasma Technology and Mathematics, Universit?t der Bundeswehr München, Neubiberg, Germany
 Download: PDF(308 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Usage of a multiple-arcs system has significantly improved process stability and coating properties in air plasma spraying. However, there are still demands on understanding and controlling the physical process to determine process conditions for reproducible coating quality and homogeneity of coating microstructure. The main goal of this work is the application of numerical simulation for the prediction of the temperature profiles at the torch outlet for real process conditions. Behaviour of the gas flow and electric arcs were described in a three-dimensional numerical model. The calculated results showed the characteristic triangular temperature distribution at the torch nozzle outlet caused by three electric arcs. These results were compared with experimentally determined temperature distributions, which were obtained with specially developed computed tomography equipment for reconstructing the emissivity and temperature distribution of the plasma jet close to the torch exit. The calculated results related to temperature values and contours were verified for the most process parameters with experimental ones.

Keywords plasma spraying      electric arc      three-cathode plasma torch      numerical simulation      computed tomography     
Corresponding Author(s): PETKOVIC Ivica,Email:petkovic@iot.rwth-aachen.de   
Issue Date: 05 September 2011
 Cite this article:   
Kirsten BOBZIN,Nazlim BAGCIVAN,Lidong ZHAO, et al. Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying[J]. Front Mech Eng, 2011, 6(3): 324-331.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-011-0125-2
https://academic.hep.com.cn/fme/EN/Y2011/V6/I3/324
1 Pfender E. Thermal plasma technology: Where do we stand and where do we go. Plasma Chemistry and Plasma Processing , 1999, 19(1): 1–31
doi: 10.1023/A:1021899731587
2 Fauchais P. Understanding plasma spraying. Journal of Physics. D, Applied Physics , 2004, 37(9): 86–108
doi: 10.1088/0022-3727/37/9/R02
3 Fauchais P, Fukumoto M, Vardelle A, Vardelle M. Knowledge concerning splat formation: An invited review. J Thermal Spray Technol , 2004, 13(3): 337–360
doi: 10.1361/10599630419670
4 Dorier J L, Gindrat M, Hollenstein C, Salito A, Loch M, Barbezat G. Time-resolved imaging of anodic arc root behavior during fluctuations of a DC plasma spraying torch. IEEE Transactions on Plasma Science , 2001, 29(3): 494–501
doi: 10.1109/27.928947
5 Dzulko M, Forster G, Landes K D, Zierhut J, Nassenstein K. Plasma torch developments. In: Proc of the International Thermal Spray Conference, Basel, Switzerland, DVS Deutscher Verband für Schwei?en , 2005
6 Fauchais P, Montavon P, Vardelle M, Cedelle J. Developments in direct current plasma spraying. Surface and Coatings Technology , 2006, 201(5): 1908–1921
doi: 10.1016/j.surfcoat.2006.04.033
7 Bobzin K, Ernst F, Richardt K, Sporer D, Fiala P. Tailor-made coatings for turbine applications using the triplex pro 200. In: Proc International Thermal Spray Conference, Maastricht, Netherlands, DVS Deutscher Verband für Schwei?en , 2008
8 Schein J, Richter M, Landes K D, Forster G, Zierhut J, Dzulko M. Tomographic investigation of plasma jets produced by multielectrode plasma torches. J Thermal Spray Technol , 2008, 17(3): 338–343
doi: 10.1007/s11666-008-9186-0
9 Baudry C, Vardelle A, Mariaux G. Numerical modeling of a DC non-transferred plasma torch: Movement of the arc anode attachment and resulting anode erosion. High Tech Plasma Proc , 2005, 9(1): 1–15
10 Trelles J P, Chazelas C, Vardelle A, Heberlein J V R. Arc Plasma Torch Modeling. J Thermal Spray Technol , 2009, 18(5-6): 728–752
doi: 10.1007/s11666-009-9342-1
11 Felix A, Muggli F, Molz R J, McCullough R, Hawley D.Improvement of plasma gun performance using comprehensive fluid element modelling: Part I. J Thermal Spray Technol , 2007, 16(5-6): 677–683
12 Molz R, McCullough R, Hawley D, Muggli F. Improvement of plasma gun performance using comprehensive fluid element modelling: Part II. J Thermal Spray Technol , 2007, 16(5-6): 684–689
doi: 10.1007/s11666-007-9100-1
13 Speckhofer G. Der magnetisch ausgelenkte Argonhochdruck-lichtbogen: Experimentelle untersuchungen and 3D-Modellierung. Dissertation for the Doctoral Degree, TU München , 1995: 27–29 (in German)
14 Murphy A B, Arundelli C J. Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas. Plasma Chemistry and Plasma Processing , 1994, 14(4): 451–490
doi: 10.1007/BF01570207
15 Marqués J L, Forster G, Schein J. Multi-electrode plasma torches: Motivation for development and current state-of-the-art. Open Plasma Phys J , 2009, 2(2): 89–98
doi: 10.2174/1876534300902020089
16 Boulos M, Fauchais P, Pfender E. Thermal Plasmas. New York: Plenum Press, 1994
[1] Jiehua LI, Bernd OBERDORFER, Daniel HABE, Peter SCHUMACHER. Determining casting defects in near-net shape casting aluminum parts by computed tomography[J]. Front. Mech. Eng., 2018, 13(1): 48-52.
[2] Kirsten BOBZIN, Lidong ZHAO, Nils KOPP, Thomas WARDA. Feasibility study of plasma sprayed Al2O3 coatings as diffusion barrier on CFC components[J]. Front Mech Eng, 2012, 7(4): 371-375.
[3] Kirsten BOBZIN, Lidong ZHAO, Thomas SCHLAEFER, Thomas WARDA. Development of oxide based diffusion barrier coatings for CFC components applied in modern furnaces[J]. Front Mech Eng, 2011, 6(4): 392-396.
[4] Bingfeng JIAO, Desheng LI, Yunkang SUI, Lezhi YE. Structure optimization for magnetic equipment of permanent magnet retarder[J]. Front Mech Eng Chin, 2010, 5(4): 442-445.
[5] Zhaomiao LIU, Huamin LIU, Xin LIU, . Dynamical analysis of droplet impact spreading on solid substrate[J]. Front. Mech. Eng., 2010, 5(3): 308-315.
[6] Fubing BAO, Jianzhong LIN. Burnett simulations of gas flow and heat transfer in microchannels[J]. Front Mech Eng Chin, 2009, 4(3): 252-263.
[7] Zhiyi YU, Guoyu WANG, Shuliang CAO. Extended two-fluid model applied to analysis of bubbly flow in multiphase rotodynamic pump impeller[J]. Front Mech Eng Chin, 2009, 4(1): 53-59.
[8] SHANG Tao, ZHAO Dingxuan, ZHANG Yuankun, GUO Xiangen, SHI Xiangzhong. Method of internal 3D flow field numerical simulation for hydrodynamic torque converter[J]. Front. Mech. Eng., 2008, 3(1): 86-90.
[9] JI Weihong, SONG Yupu, LIANG Bing. Numeric simulation for structure’s damage identification of space truss[J]. Front. Mech. Eng., 2007, 2(4): 423-428.
[10] HE Cunfu, HANG Lijun, WU Bin. Design of a piezoelectric transducer cylindrical phase modulator for simulating acoustic emission signals[J]. Front. Mech. Eng., 2007, 2(3): 370-373.
[11] HU Guo-liang, XU Bing, YANG Hua-yong, ZHANG Yi-ding. Design and Experimental Research on a New Pipe Rupture Valve[J]. Front. Mech. Eng., 2006, 1(1): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed