Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    0, Vol. Issue () : 33-39    https://doi.org/10.1007/s11465-011-0203-5
RESEARCH ARTICLE
Capsule endoscopy—A mechatronics perspective
Lin LIN1(), Mahdi RASOULI1, Andy Prima KENCANA1, Su Lim TAN2, Kai Juan WONG2, Khek Yu HO3, Soo Jay PHEE1
1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore; 2. School of Computer Engineering, Nanyang Technological University, Singapore, Singapore; 3. National University Hospital, Singapore, Singapore
 Download: PDF(194 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The recent advances in integrated circuit technology, wireless communication, and sensor technology have opened the door for development of miniature medical devices that can be used for enhanced monitoring and treatment of medical conditions. Wireless capsule endoscopy is one of such medical devices that has gained significant attention during the past few years. It is envisaged that future wireless capsule endoscopies replace traditional endoscopy procedures by providing advanced functionalities such as active locomotion, body fluid/tissue sampling, and drug delivery. Development of energy-efficient miniaturized actuation mechanisms is a key step toward achieving this goal. Here, we review some of the actuators that could be integrated into future wireless capsules and discuss the existing challenges.

Keywords wireless capsule endoscopy      ingestible medical device      in-body medical device      medical robot      miniature actuator     
Corresponding Author(s): LIN Lin,Email:m070005@e.ntu.edu.sg   
Issue Date: 05 March 2011
 Cite this article:   
Lin LIN,Mahdi RASOULI,Andy Prima KENCANA, et al. Capsule endoscopy—A mechatronics perspective[J]. Front Mech Eng, 0, (): 33-39.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-011-0203-5
https://academic.hep.com.cn/fme/EN/Y0/V/I/33
Fig.1  1—optical dome; 2—lens holder; 3—short focal length lens; 4—LEDs; 5—CMOS image sensor; 6—two batteries; 7—ASIC RF transmitter; 8—antenna
Structure of the capsule []
Fig.2  Diagnostic software system []
PillCamEndoCapsuleMicroCamOMOM Capsule
CompanyGiven imagingOlympusIntroMedicJinshan
diameter*length/(mm*mm)11*2611*2611*2313*28.4
Frame rate/(frame·s-1)221.4-2.82-15
Power sourceBatteriesBatteriesBatteriesBatteries
Image sensorCMOSCCDCMOSCMOS
Motion modePeristalsisPeristalsisPeristalsisPeristalsis
Tab.1  Comparison of the commercial wireless capsule endoscopies
Fig.3  Wireless power supply
Signal intensityMagnetic strengthTime arrival delay
Influenced by attenuation of bodyYesNoNo
Special signal for localizationYesNoYes
Strict time synchronizationNoNoYes
Extra space in the capsuleNoYesNo
Tab.2  Comparison of different techniques
1 Moglia A, Menciassi A, Schurr M O, Dario P. Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems. Biomedical Microdevices , 2007, 9(2): 235-243
doi: 10.1007/s10544-006-9025-3 pmid:17160703
2 El-Matary W. Wireless capsule endoscopy: indications, limitations, and future challenges. Journal of Pediatric Gastroenterology and Nutrition , 2008, 46(1): 4-12
doi: 10.1097/01.mpg.0000304447.69305.cc pmid:18162827
3 Melmed G Y, Lo S K. Capsule endoscopy: practical applications. Clinical Gastroenterology and Hepatology , 2005, 3(5): 411-422
doi: 10.1016/S1542-3565(05)00019-4 pmid:15880309
4 Given Imaging. http://www.givenimaging.com
5 http://www.olympusamerica.com/msg_section/index.asp
6 http://www.intromedic.com
7 http://www.jinshangroup.com
8 Quirini M, Menciassi A, Scapellato S, Stefanini C, Dario P. Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract. IEEE Trans Mechatronics , 2008, 13(2): 169-179
doi: 10.1109/TMECH.2008.918491
9 Quirini M, Menciassi A, Scapellato S, Dario P, Rieber F, Ho C N, Schostek S, Schurr M O. Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointestinal Endoscopy , 2008, 67(7): 1153-1158
doi: 10.1016/j.gie.2007.11.052 pmid:18513557
10 Kim H M, Yang S, Kim J, Park S, Cho J H, Park J Y, Kim T S, Yoon E S, Song S Y, Bang S. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos). Gastrointestinal Endoscopy , 2010, 72(2): 381-387
doi: 10.1016/j.gie.2009.12.058 pmid:20497903
11 Carta R, Tortora G, Thoné J, Lenaerts B, Valdastri P, Menciassi A, Dario P, Puers R. Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. Biosensors & Bioelectronics , 2009, 25(4): 845-851
doi: 10.1016/j.bios.2009.08.049 pmid:19775883
12 Kim B, Lee M G, Lee Y P, Kim Y, Lee G. An earthworm-like micro robot using shape memory alloy actuator. Sensors and Actuators. A, Physical , 2006, 125(2): 429-437
doi: 10.1016/j.sna.2005.05.004
13 Swain P, Toor A, Volke F, Keller J, Gerber J, Rabinovitz E, Rothstein R I. Remote magnetic manipulation of a wireless capsule endoscope in the esophagus and stomach of humans (with videos). Gastrointestinal Endoscopy , 2010, 71(7): 1290-1293
doi: 10.1016/j.gie.2010.01.064 pmid:20417507
14 Raju G S, Nath S K. Capsule endoscopy. Current Gastroenterology Reports , 2005, 7(5): 358-364
doi: 10.1007/s11894-005-0004-2 pmid:16168233
15 Rentschler M E, Dumpert J, Platt S R, Ahmed S I, Farritor S M, Oleynikov D. Mobile in vivo camera robots provide sole visual feedback for abdominal exploration and cholecystectomy. Surgical Endoscopy , 2006, 20(1): 135-138
doi: 10.1007/s00464-005-0205-7 pmid:16333551
16 Lim K J, Lee J S, Park S H, Kang S H, Kim H H. Fabrication and characteristics of impact type ultrasonic motor. Journal of the European Ceramic Society , 2007, 27(13-15): 4159-4162
doi: 10.1016/j.jeurceramsoc.2007.02.125
17 Kim K H, Lee S Y, Kim S. A mobile auto-focus actuator based on a rotary VCM with the zero holding current. Optics Express , 2009, 17(7): 5891-5896
doi: 10.1364/OE.17.005891 pmid:19333359
18 Cavallotti C, Piccigallo M, Susilo E, Valdastri P, Menciassi A, Dario P. An integrated vision system with autofocus for wireless capsular endoscopy. Sensors and Actuators. A, Physical , 2009, 156(1): 72-78
doi: 10.1016/j.sna.2009.01.028
19 Rasouli M, Kencana A P, Huynh V A. Kiat E, Lai J C Y, Phee L S J. Wireless capsule endoscopes for enhanced diagnostic inspection of gastrointestinal tract. In: Proceedings of IEEE Conference on Robotics Automation and Mechatronics Singapore , 2010, 68-71
20 Morita E, Ohtsuka N, Shindo Y, Nouda S, Kuramoto T, Inoue T, Murano M, Umegaki E, Higuchi K. In vivo trial of a driving system for a self-propelling capsule endoscope using a magnetic field (with video). Gastrointestinal Endoscopy , 2010, 72(4): 836-840
doi: 10.1016/j.gie.2010.06.016 pmid:20883863
21 Carpi F, Galbiati S, Carpi A. Magnetic shells for gastrointestinal endoscopic capsules as a means to control their motion. Biomedicine & Pharmacotherapy , 2006, 60(8): 370-374
doi: 10.1016/j.biopha.2006.07.001 pmid:16935464
22 Kong K C, Cha J, Jeon D, Cho D D. A rotational micro biopsy device for the capsule endoscope. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems , 2005, 1839-1843
23 Park S, Koo K, Bang S M, Park J Y, Song S Y, Cho D D. A novel microactuator for microbiopsy in capsular endoscopes. Journal of Micromechanics and Microengineering , 2008, 18(2): 025032
doi: 10.1088/0960-1317/18/2/025032
24 Wilding I I, Hirst P, Connor A. Development of a new engineering-based capsule for human drug absorption studies. Pharmaceutical Science & Technology Today , 2000, 3(11): 385-392
doi: 10.1016/S1461-5347(00)00311-4 pmid:11091162
25 Parr A F, Sandefer E P, Wissel P, McCartney M, McClain C, Ryo U Y, Digenis G A. Evaluation of the feasibility and use of a prototype remote drug delivery capsule (RDDC) for non-invasive regional drug absorption studies in the GI tract of man and beagle dog. Pharmaceutical Research , 1999, 16(2): 266-271
doi: 10.1023/A:1018884510163 pmid:10100313
26 Gr?ning R, Bensmann H, Müller R S. Control of drug release from capsules using high frequency energy transmission systems. International Journal of Pharmaceutics , 2008, 364(1): 9-13
doi: 10.1016/j.ijpharm.2008.07.007 pmid:18682281
27 Fuhr U, Staib A H, Harder S, Becker K, Liermann D, Sch?llnhammer G, Roed I S. Absorption of ipsapirone along the human gastrointestinal tract. British Journal of Clinical Pharmacology , 1994, 38(1): 83-86
pmid:7946942
28 Stevens H N E, Wilson C G, Welling P G, Bakhshaee M, Binns J S, Perkins A C, Frier M, Blackshaw E P, Frame M W, Nichols D J, Humphrey M J, Wicks S R. Evaluation of Pulsincap to provide regional delivery of dofetilide to the human GI tract. International Journal of Pharmaceutics , 2002, 236(1-2): 27-34
doi: 10.1016/S0378-5173(02)00012-1 pmid:11891067
29 Kencana A P, Rasouli M, Huynh V A, Ting E K, Chong Y L, Nguyen D Q H, Tan S L, Wong K J, Phee S J. An Ingestible Wireless Capsule for Treatment of Obesity, In: Proceedings of the Engineering in Medicine and Biology , 2010
30 Swain P. The future of wireless capsule endoscopy. World Journal of Gastroenterology , 2008, 14(26): 4142-4145
doi: 10.3748/wjg.14.4142 pmid:18636658
31 Sterzer F. Microwave medical devices. Microwave Magazine, IEEE , 2002, 3(1): 65-70
doi: 10.1109/6668.990689
32 Wang L, Drysdale T D, Cumming D R S. In situ characterization of two wireless transmission schemes for ingestible capsules. Biomedical Engineering, IEEE Transactions on , 2007, 54(11): 2020-2027
doi: 10.1109/TBME.2007.895105 pmid:18018697
33 Lenaerts B, Puers R. An inductive power link for a wireless endoscope. Biosensors & Bioelectronics , 2007, 22(7): 1390-1395
doi: 10.1016/j.bios.2006.06.015 pmid:16904885
34 McSpadden J O, Yoo T, Chang K. Theoretical and experimental investigation of a rectenna element for microwave power transmission. Microwave Theory and Techniques, IEEE Transactions on , 1992, 40(12): 2359-2366
doi: 10.1109/22.179902
35 Arra S, Leskinen J, Heikkila J, Vanhala J. Ultrasonic Power and Data Link for Wireless Implantable Applications. In: Proceedings of Wireless Pervasive Computing , 2007
36 Ryu M, Kim J D, Chin H U, Kim J, Song S Y. Three-dimensional power receiver for in vivo robotic capsules. Medical & Biological Engineering & Computing , 2007, 45(10): 997-1002
doi: 10.1007/s11517-007-0223-9 pmid:17684783
37 Xin W, Yan G, Wang W. Study of a wireless power transmission system for an active capsule endoscope. International Journal of Medical Robotics and Computer Assisted Surgery , 2010, 6(1): 113-122
pmid:20112281
38 Chao H, Max Qinghu M, Mandal M. Efficient magnetic localization and orientation technique for capsule endoscopy. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems , 2005, 628-633
39 Johannessen E A, Wang L, Reid S W J, Cumming D R S, Cooper J M. Implementation of radiotelemetry in a lab-in-a-pill format. Lab on a Chip , 2006, 6(1): 39-45
doi: 10.1039/b507312j pmid:16372067
[1] Mahdi RASOULI, Andy Prima KENCANA, Van An HUYNH, Eng Kiat TING, Joshua Chong Yue LAI, Kai Juan WONG, Su Lim TAN, Soo Jay PHEE. Ingestible wireless capsules for enhanced diagnostic inspection of gastrointestinal tract[J]. Front Mech Eng, 2011, 6(1): 40-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed