|
|
Capsule endoscopy—A mechatronics perspective |
Lin LIN1( ), Mahdi RASOULI1, Andy Prima KENCANA1, Su Lim TAN2, Kai Juan WONG2, Khek Yu HO3, Soo Jay PHEE1 |
1. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore; 2. School of Computer Engineering, Nanyang Technological University, Singapore, Singapore; 3. National University Hospital, Singapore, Singapore |
|
|
Abstract The recent advances in integrated circuit technology, wireless communication, and sensor technology have opened the door for development of miniature medical devices that can be used for enhanced monitoring and treatment of medical conditions. Wireless capsule endoscopy is one of such medical devices that has gained significant attention during the past few years. It is envisaged that future wireless capsule endoscopies replace traditional endoscopy procedures by providing advanced functionalities such as active locomotion, body fluid/tissue sampling, and drug delivery. Development of energy-efficient miniaturized actuation mechanisms is a key step toward achieving this goal. Here, we review some of the actuators that could be integrated into future wireless capsules and discuss the existing challenges.
|
Keywords
wireless capsule endoscopy
ingestible medical device
in-body medical device
medical robot
miniature actuator
|
Corresponding Author(s):
LIN Lin,Email:m070005@e.ntu.edu.sg
|
Issue Date: 05 March 2011
|
|
1 |
Moglia A, Menciassi A, Schurr M O, Dario P. Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems. Biomedical Microdevices , 2007, 9(2): 235-243 doi: 10.1007/s10544-006-9025-3 pmid:17160703
|
2 |
El-Matary W. Wireless capsule endoscopy: indications, limitations, and future challenges. Journal of Pediatric Gastroenterology and Nutrition , 2008, 46(1): 4-12 doi: 10.1097/01.mpg.0000304447.69305.cc pmid:18162827
|
3 |
Melmed G Y, Lo S K. Capsule endoscopy: practical applications. Clinical Gastroenterology and Hepatology , 2005, 3(5): 411-422 doi: 10.1016/S1542-3565(05)00019-4 pmid:15880309
|
4 |
Given Imaging. http://www.givenimaging.com
|
5 |
http://www.olympusamerica.com/msg_section/index.asp
|
6 |
http://www.intromedic.com
|
7 |
http://www.jinshangroup.com
|
8 |
Quirini M, Menciassi A, Scapellato S, Stefanini C, Dario P. Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract. IEEE Trans Mechatronics , 2008, 13(2): 169-179 doi: 10.1109/TMECH.2008.918491
|
9 |
Quirini M, Menciassi A, Scapellato S, Dario P, Rieber F, Ho C N, Schostek S, Schurr M O. Feasibility proof of a legged locomotion capsule for the GI tract. Gastrointestinal Endoscopy , 2008, 67(7): 1153-1158 doi: 10.1016/j.gie.2007.11.052 pmid:18513557
|
10 |
Kim H M, Yang S, Kim J, Park S, Cho J H, Park J Y, Kim T S, Yoon E S, Song S Y, Bang S. Active locomotion of a paddling-based capsule endoscope in an in vitro and in vivo experiment (with videos). Gastrointestinal Endoscopy , 2010, 72(2): 381-387 doi: 10.1016/j.gie.2009.12.058 pmid:20497903
|
11 |
Carta R, Tortora G, Thoné J, Lenaerts B, Valdastri P, Menciassi A, Dario P, Puers R. Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. Biosensors & Bioelectronics , 2009, 25(4): 845-851 doi: 10.1016/j.bios.2009.08.049 pmid:19775883
|
12 |
Kim B, Lee M G, Lee Y P, Kim Y, Lee G. An earthworm-like micro robot using shape memory alloy actuator. Sensors and Actuators. A, Physical , 2006, 125(2): 429-437 doi: 10.1016/j.sna.2005.05.004
|
13 |
Swain P, Toor A, Volke F, Keller J, Gerber J, Rabinovitz E, Rothstein R I. Remote magnetic manipulation of a wireless capsule endoscope in the esophagus and stomach of humans (with videos). Gastrointestinal Endoscopy , 2010, 71(7): 1290-1293 doi: 10.1016/j.gie.2010.01.064 pmid:20417507
|
14 |
Raju G S, Nath S K. Capsule endoscopy. Current Gastroenterology Reports , 2005, 7(5): 358-364 doi: 10.1007/s11894-005-0004-2 pmid:16168233
|
15 |
Rentschler M E, Dumpert J, Platt S R, Ahmed S I, Farritor S M, Oleynikov D. Mobile in vivo camera robots provide sole visual feedback for abdominal exploration and cholecystectomy. Surgical Endoscopy , 2006, 20(1): 135-138 doi: 10.1007/s00464-005-0205-7 pmid:16333551
|
16 |
Lim K J, Lee J S, Park S H, Kang S H, Kim H H. Fabrication and characteristics of impact type ultrasonic motor. Journal of the European Ceramic Society , 2007, 27(13-15): 4159-4162 doi: 10.1016/j.jeurceramsoc.2007.02.125
|
17 |
Kim K H, Lee S Y, Kim S. A mobile auto-focus actuator based on a rotary VCM with the zero holding current. Optics Express , 2009, 17(7): 5891-5896 doi: 10.1364/OE.17.005891 pmid:19333359
|
18 |
Cavallotti C, Piccigallo M, Susilo E, Valdastri P, Menciassi A, Dario P. An integrated vision system with autofocus for wireless capsular endoscopy. Sensors and Actuators. A, Physical , 2009, 156(1): 72-78 doi: 10.1016/j.sna.2009.01.028
|
19 |
Rasouli M, Kencana A P, Huynh V A. Kiat E, Lai J C Y, Phee L S J. Wireless capsule endoscopes for enhanced diagnostic inspection of gastrointestinal tract. In: Proceedings of IEEE Conference on Robotics Automation and Mechatronics Singapore , 2010, 68-71
|
20 |
Morita E, Ohtsuka N, Shindo Y, Nouda S, Kuramoto T, Inoue T, Murano M, Umegaki E, Higuchi K. In vivo trial of a driving system for a self-propelling capsule endoscope using a magnetic field (with video). Gastrointestinal Endoscopy , 2010, 72(4): 836-840 doi: 10.1016/j.gie.2010.06.016 pmid:20883863
|
21 |
Carpi F, Galbiati S, Carpi A. Magnetic shells for gastrointestinal endoscopic capsules as a means to control their motion. Biomedicine & Pharmacotherapy , 2006, 60(8): 370-374 doi: 10.1016/j.biopha.2006.07.001 pmid:16935464
|
22 |
Kong K C, Cha J, Jeon D, Cho D D. A rotational micro biopsy device for the capsule endoscope. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems , 2005, 1839-1843
|
23 |
Park S, Koo K, Bang S M, Park J Y, Song S Y, Cho D D. A novel microactuator for microbiopsy in capsular endoscopes. Journal of Micromechanics and Microengineering , 2008, 18(2): 025032 doi: 10.1088/0960-1317/18/2/025032
|
24 |
Wilding I I, Hirst P, Connor A. Development of a new engineering-based capsule for human drug absorption studies. Pharmaceutical Science & Technology Today , 2000, 3(11): 385-392 doi: 10.1016/S1461-5347(00)00311-4 pmid:11091162
|
25 |
Parr A F, Sandefer E P, Wissel P, McCartney M, McClain C, Ryo U Y, Digenis G A. Evaluation of the feasibility and use of a prototype remote drug delivery capsule (RDDC) for non-invasive regional drug absorption studies in the GI tract of man and beagle dog. Pharmaceutical Research , 1999, 16(2): 266-271 doi: 10.1023/A:1018884510163 pmid:10100313
|
26 |
Gr?ning R, Bensmann H, Müller R S. Control of drug release from capsules using high frequency energy transmission systems. International Journal of Pharmaceutics , 2008, 364(1): 9-13 doi: 10.1016/j.ijpharm.2008.07.007 pmid:18682281
|
27 |
Fuhr U, Staib A H, Harder S, Becker K, Liermann D, Sch?llnhammer G, Roed I S. Absorption of ipsapirone along the human gastrointestinal tract. British Journal of Clinical Pharmacology , 1994, 38(1): 83-86 pmid:7946942
|
28 |
Stevens H N E, Wilson C G, Welling P G, Bakhshaee M, Binns J S, Perkins A C, Frier M, Blackshaw E P, Frame M W, Nichols D J, Humphrey M J, Wicks S R. Evaluation of Pulsincap to provide regional delivery of dofetilide to the human GI tract. International Journal of Pharmaceutics , 2002, 236(1-2): 27-34 doi: 10.1016/S0378-5173(02)00012-1 pmid:11891067
|
29 |
Kencana A P, Rasouli M, Huynh V A, Ting E K, Chong Y L, Nguyen D Q H, Tan S L, Wong K J, Phee S J. An Ingestible Wireless Capsule for Treatment of Obesity, In: Proceedings of the Engineering in Medicine and Biology , 2010
|
30 |
Swain P. The future of wireless capsule endoscopy. World Journal of Gastroenterology , 2008, 14(26): 4142-4145 doi: 10.3748/wjg.14.4142 pmid:18636658
|
31 |
Sterzer F. Microwave medical devices. Microwave Magazine, IEEE , 2002, 3(1): 65-70 doi: 10.1109/6668.990689
|
32 |
Wang L, Drysdale T D, Cumming D R S. In situ characterization of two wireless transmission schemes for ingestible capsules. Biomedical Engineering, IEEE Transactions on , 2007, 54(11): 2020-2027 doi: 10.1109/TBME.2007.895105 pmid:18018697
|
33 |
Lenaerts B, Puers R. An inductive power link for a wireless endoscope. Biosensors & Bioelectronics , 2007, 22(7): 1390-1395 doi: 10.1016/j.bios.2006.06.015 pmid:16904885
|
34 |
McSpadden J O, Yoo T, Chang K. Theoretical and experimental investigation of a rectenna element for microwave power transmission. Microwave Theory and Techniques, IEEE Transactions on , 1992, 40(12): 2359-2366 doi: 10.1109/22.179902
|
35 |
Arra S, Leskinen J, Heikkila J, Vanhala J. Ultrasonic Power and Data Link for Wireless Implantable Applications. In: Proceedings of Wireless Pervasive Computing , 2007
|
36 |
Ryu M, Kim J D, Chin H U, Kim J, Song S Y. Three-dimensional power receiver for in vivo robotic capsules. Medical & Biological Engineering & Computing , 2007, 45(10): 997-1002 doi: 10.1007/s11517-007-0223-9 pmid:17684783
|
37 |
Xin W, Yan G, Wang W. Study of a wireless power transmission system for an active capsule endoscope. International Journal of Medical Robotics and Computer Assisted Surgery , 2010, 6(1): 113-122 pmid:20112281
|
38 |
Chao H, Max Qinghu M, Mandal M. Efficient magnetic localization and orientation technique for capsule endoscopy. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems , 2005, 628-633
|
39 |
Johannessen E A, Wang L, Reid S W J, Cumming D R S, Cooper J M. Implementation of radiotelemetry in a lab-in-a-pill format. Lab on a Chip , 2006, 6(1): 39-45 doi: 10.1039/b507312j pmid:16372067
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|