|
|
|
EEG controlled neuromuscular electrical stimulation of the upper limb for stroke patients |
Hock Guan TAN1,3, Cheng Yap SHEE1, Keng He KONG2, Cuntai GUAN3, Wei Tech ANG1( ) |
| 1. School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, Singapore; 2. Department of Rehabilitation Medicine, Tan Tock Seng Hospital, 17 Ang Mo Kio Avenue 9, Singapore, Singapore; 3. Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore, Singapore |
|
|
|
|
Abstract This paper describes the Brain Computer Interface (BCI) system and the experiments to allow post-acute (<3 months) stroke patients to use electroencephalogram (EEG) to trigger neuromuscular electrical stimulation (NMES)-assisted extension of the wrist/fingers, which are essential pre-requisites for useful hand function. EEG was recorded while subjects performed motor imagery of their paretic limb, and then analyzed to determine the optimal frequency range within the mu-rhythm, with the greatest attenuation. Aided by visual feedback, subjects then trained to regulate their mu-rhythm EEG to operate the BCI to trigger NMES of the wrist/finger. 6 post-acute stroke patients successfully completed the training, with 4 able to learn to control and use the BCI to initiate NMES. This result is consistent with the reported BCI literacy rate of healthy subjects. Thereafter, without the loss of generality, the controller of the NMES is developed and is based on a model of the upper limb muscle (biceps/triceps) groups to determine the intensity of NMES required to flex or extend the forearm by a specific angle. The muscle model is based on a phenomenological approach, with parameters that are easily measured and conveniently implemented.
|
| Keywords
brain computer interface
neuromuscular electrical stimulation
stroke
musculoskeletal modeling
|
|
Corresponding Author(s):
ANG Wei Tech,Email:cyshee@ntu.edu.sg
|
|
Issue Date: 05 March 2011
|
|
| 1 |
Wade D T, Langton-Hewer R, Wood V A, Skilbeck C E, Ismail H M. The hemiplegic arm after stroke: measurement and recovery. Journal of Neurology, Neurosurgery, and Psychiatry , 1983, 46(6): 521–524 doi: 10.1136/jnnp.46.6.521 pmid:6875585
|
| 2 |
Sunderland A, Tinson D J, Bradley L, Hewer R L. Arm function after stroke. An evaluation of grip strength as a measure of recovery and a prognostic indicator. Journal of Neurology, Neurosurgery, and Psychiatry , 1989, 52(11): 1267–1272 doi: 10.1136/jnnp.52.11.1267 pmid:2592969
|
| 3 |
Pfurtscheller G, Neuper C, Guger C, Harkam W, Ramoser H, Schl?gl A, Obermaier B, Pregenzer M. Current trends in Graz Brain-Computer Interface (BCI) research. IEEE Transactions on Rehabilitation Engineering , 2000, 8(2): 216–219 doi: 10.1109/86.847821 pmid:10896192
|
| 4 |
Buch E, Weber C, Cohen L G, Braun C, Dimyan M A, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A, Birbaumer N. Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke , 2008, 39(3): 910–917 doi: 10.1161/STROKEAHA.107.505313 pmid:18258825
|
| 5 |
Daly J J, Cheng R, Hrovat K, Litinas K, McCabe J P, Rogers J M, Dohring M E.Feasibility and accuracy of EEG-BCI system control during imposed upper limb motor tasks and relax conditions by stroke survivors. Society for Neuroscience, Abstract 712.9
|
| 6 |
Sheffler L R, Chae J. Neuromuscular electrical stimulation in neurorehabilitation. Muscle & Nerve , 2007, 35(5): 562–590 doi: 10.1002/mus.20758 pmid:17299744
|
| 7 |
Jasper H H. The ten-twenty electrode system of the international federation. Electroencephalography and Clinical Neurophysiology , 1958, 10: 371–375
|
| 8 |
Pfurtscheller G, Neuper C, Andrew C, Edlinger G. Foot and hand area mu rhythms. International Journal of Psychophysiology , 1997, 26(1–3): 121–135 doi: 10.1016/S0167-8760(97)00760-5 pmid:9202999
|
| 9 |
Veluvolu K C, Tan U X, Ang W T, Latt W T, Shee C Y. Bandlimited multiple fourier linear combiner for real-time tremor compensation. Proceedings of the 29th IEEE Engineering in Medicine and Biology Conference, Lyon, France , 2007, 2847–2850
|
| 10 |
Tan H G, Zhang H H, Wang C C, Shee C Y, Ang W T, Guan C T. Arm flexion and extension exercises using a brain-computer interface and functional electrical stimulation. Proceedings of the 6th IASTED International Conference on Biomedical Engineering, Innsbruck, Austria , 2008
|
| 11 |
Tan H G, Zhang H H, Wang C C, Shee C Y, Ang W T, Guan C T. A step towards discretized motion control of the upper limb using brain-computer interface and electrical stimulation. Proceedings of the 13th Annual International FES Society Conference, Freiburg, Germany , 2008
|
| 12 |
Pfurtscheller G, Neuper C. Motor imagery activates primary sensorimotor area in humans. Neuroscience Letters , 1997, 239(2–3): 65–68 doi: 10.1016/S0304-3940(97)00889-6 pmid:9469657
|
| 13 |
Keller T, Popovic M R, Pappas I P I, Müller P Y. Transcutaneous functional electrical stimulator “Compex Motion”. Artificial Organs , 2002, 26(3): 219–223 doi: 10.1046/j.1525-1594.2002.06934.x pmid:11940017
|
| 14 |
Thrasher T A, Zivanovic V, McIlroy W, Popovic M R. Rehabilitation of reaching and grasping function in severe hemiplegic patients using functional electrical stimulation therapy. Neurorehabilitation and Neural Repair , 2008, 22(6): 706–714 doi: 10.1177/1545968308317436 pmid:18971385
|
| 15 |
Shin H K, Cho S H, Jeon H S, Lee Y H, Song J C, Jang S H, Lee C H, Kwon Y H. Cortical effect and functional recovery by the electromyography-triggered neuromuscular stimulation in chronic stroke patients. Neuroscience Letters , 2008, 442(3): 174–179 doi: 10.1016/j.neulet.2008.07.026 pmid:18644424
|
| 16 |
Chae J, Sheffler L, Knutson J. Neuromuscular electrical stimulation for motor restoration in hemiplegia. Topics in Stroke Rehabilitation , 2008, 15(5): 412–426 doi: 10.1310/tsr1505-412 pmid:19008202
|
| 17 |
Nijholt A, Tan D, Pfurtscheller G, Brunner C, Mill J, Allison B, Graimann B, Popescu F, Blankertz B, M K R. Trends & controversies: brain-computer interfacing for intelligent systems. IEEE Intelligent Systems , 2008, 23(3): 72–79 doi: 10.1109/MIS.2008.41
|
| 18 |
Sharma N, Pomeroy V M, Baron J C. Motor imagery: a backdoor to the motor system after stroke? Stroke , 2006, 37(7): 1941–1952 doi: 10.1161/01.STR.0000226902.43357.fc pmid:16741183
|
| 19 |
Müller K, Bütefisch C M, Seitz R J, H?mberg V. Mental practice improves hand function after hemiparetic stroke. Restorative Neurology and Neuroscience , 2007, 25(5–6): 501–511 pmid:18334768
|
| 20 |
Hill A V. The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B. Biological Sciences , 1938, 126(843): 136–195 doi: 10.1098/rspb.1938.0050
|
| 21 |
Huxley A F. Muscle structure and theories of contraction. Progress in Biophysics and Biophysical Chemistry , 1957, 7: 255–318 pmid:13485191
|
| 22 |
Winters J M, Stark L. Muscle models: what is gained and what is lost by varying model complexity. Biological Cybernetics , 1987, 55(6): 403–420 doi: 10.1007/BF00318375 pmid:3567243
|
| 23 |
Ferrarin M, Palazzo F, Riener R, Quintern J. Model-based control of FES-induced single joint movements. IEEE Transactions on Neural Systems and Rehabilitation Engineering , 2001, 9(3): 245–257 doi: 10.1109/7333.948452 pmid:11561660
|
| 24 |
Zatsiorsky V M, Seluyanov V. The mass and inertia characteristics of the main segments of human body. In Biomechanics VIII-B, Matsui H & Kobayashi K, (Eds.). Champaign, IL: Human Kinetics, 1983, 1152–1159
|
| 25 |
Hatze H. Myocybernetic control models of skeletal muscle: Characteristics and applications [dissertation]. University of South Africa, Pretoria , 1981
|
| 26 |
Zajac F E. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews in Biomedical Engineering , 1989, 17(4): 359–411 pmid:2676342
|
| 27 |
Riener R, Ferrarin M, Pavan E E, Frigo C A. Patient-driven control of FES-supported standing up and sitting down: experimental results. IEEE Transactions on Rehabilitation Engineering , 2000, 8(4): 523–529 doi: 10.1109/86.895956 pmid:11204044
|
| 28 |
Ferrarin M, Iacuone P, Mingrino A, Frigo C, Pedotti A. A dynamic model of electrically activated knee muscles in healthy and paraplegics. In Neuroprosthetics from Basic Research to Clinical Applications . Pedotti A, Ferrarin M, Riener R, Quintern J (Eds.), Berlin, Germany: Springer-Verlag, 1996, 81–90
|
| 29 |
Garner B A, Pandy M G. Estimation of musculotendon properties in the human upper limb. Annals of Biomedical Engineering , 2003, 31(2): 207–220 doi: 10.1114/1.1540105 pmid:12627828
|
| 30 |
Stein R B, Zehr E P, Lebiedowska M K, Popovi? D B, Scheiner A, Chizeck H J. Estimating mechanical parameters of leg segments in individuals with and without physical disabilities. IEEE Transactions on Rehabilitation Engineering , 1996, 4(3): 201–211 doi: 10.1109/86.536776 pmid:8800224
|
| 31 |
Riener R, Edrich T. Identification of passive elastic joint moments in the lower extremities. Journal of Biomechanics , 1999, 32(5): 539–544 doi: 10.1016/S0021-9290(99)00009-3 pmid:10327008
|
| 32 |
Edrich T, Riener R, Quintern J. Analysis of passive elastic joint moments in paraplegics. IEEE Transactions on Bio-Medical Engineering , 2000, 47(8): 1058–1065 doi: 10.1109/10.855933 pmid:10943054
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|