Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2012, Vol. 7 Issue (1) : 23-28    https://doi.org/10.1007/s11465-012-0304-9
RESEARCH ARTICLE
Trajectory planning of mobile robots using indirect solution of optimal control method in generalized point-to-point task
M. NAZEMIZADEH1(), H. N. RAHIMI2, K. AMINI KHOIY1,3
1. Department of mechanics, Damavand Branch, Islamic Azad University, Damavand, Iran; 2. Department of Mechanical Engineering, Damavand Branch, Islamic Azad University, Damavand, Iran; Department of mechanics, Damavand Branch, Islamic Azad University, Damavand, Iran; 3. Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
 Download: PDF(145 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents an optimal control strategy for optimal trajectory planning of mobile robots by considering nonlinear dynamic model and nonholonomic constraints of the system. The nonholonomic constraints of the system are introduced by a nonintegrable set of differential equations which represent kinematic restriction on the motion. The Lagrange’s principle is employed to derive the nonlinear equations of the system. Then, the optimal path planning of the mobile robot is formulated as an optimal control problem. To set up the problem, the nonlinear equations of the system are assumed as constraints, and a minimum energy objective function is defined. To solve the problem, an indirect solution of the optimal control method is employed, and conditions of the optimality derived as a set of coupled nonlinear differential equations. The optimality equations are solved numerically, and various simulations are performed for a nonholonomic mobile robot to illustrate effectiveness of the proposed method.

Keywords mobile robot      trajectory planning      nonlinear dynamic      optimal control     
Corresponding Author(s): NAZEMIZADEH M.,Email:mn.nazemizadeh@gmail.com   
Issue Date: 05 March 2012
 Cite this article:   
M. NAZEMIZADEH,H. N. RAHIMI,K. AMINI KHOIY. Trajectory planning of mobile robots using indirect solution of optimal control method in generalized point-to-point task[J]. Front Mech Eng, 2012, 7(1): 23-28.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-012-0304-9
https://academic.hep.com.cn/fme/EN/Y2012/V7/I1/23
1 Ma Q Z, Lei X J. Dynamic path planning of mobile robots based on ABC algorithm. Artificial Intelligence and Computational Intelligence , 2010, 6320: 267–274
doi: 10.1007/978-3-642-16527-6_34
2 Zhou T, Fan X P, Yang Sh Y, Qu Zh H. Path planning for mobile robots based on hybrid architecture platform. Computer and Information Science , 2010, 3(3): 117–121
3 Castillo O, Trujillo L, Melin P. Multiple objective genetic algorithms for path-planning optimization in autonomous mobile robots. Soft Computing , 2007, 11(3): 269–279
doi: 10.1007/s00500-006-0068-4
4 Yamaguchi H, Kanbo Y, Kawakami A. Formation vector control of nonholonomic mobile robot groups and its experimental verification. International Journal of Vehicle Autonomous Systems , 2011, 9(1,2): 26–45
doi: 10.1504/IJVAS.2011.038178
5 Dierks T, Brenner B, Jagannathan S. Discrete-time optimal control of nonholonomic mobile robot formations using linearly parameterized neural networks. International Journal of Robotics and Automation , 2011, 26(1)
6 Park B S, Yoo S J, Park J B, Choi Y H. A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots. IEEE Transactions on Control Systems Technology , 2010, 18(5): 1199–1206
doi: 10.1109/TCST.2009.2034639
7 Campion G, Bastin G, Dandrea-Novel B. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation , 1996, 12(1): 47–6 2
doi: 10.1109/70.481750
8 Morin P, Samson C. Handbook of Robotics. New York: Springer, 2008
9 Dixon W E, Dawson D M, Zergeroglu E, Zhang F. Robust tracking and regulation control for mobile robots. International Journal of Robust and Nonlinear Control , 2000, 10(4): 199–216
doi: 10.1002/(SICI)1099-1239(20000415)10:4<199::AID-RNC468>3.0.CO;2-P
10 Kanayama Y, Kimura Y, Miyazaki F, Noguchi T. A stable tracking control method for an autonomous mobile robot. In: Proceedings of IEEE International Conference on Robotics and Automation , 1990, 1: 384–389
11 de Wit C C, Sordalen O J. Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Transactions on Automatic Control , 1992, 37(11): 1791–17 9 7
12 Jiang Zh P, Nijmeijer H. Tracking control of mobile robots: a case study in backstepping. Automatica , 1997, 33(7): 1393–1399
doi: 10.1016/S0005-1098(97)00055-1
13 Jiang Zh P, Lefeber E, Nijmeijer H. Saturated stabilization and tracking of a nonholonomic mobile robot. Systems & Control Letters , 2001, 42(5): 327–332
doi: 10.1016/S0167-6911(00)00104-3
14 Wu Y Q, Wang B, Zong G D. Finite-time tracking controller design for nonholonomic systems with extended chained form. IEEE Transactions on Circuits and Systems II: Express Briefs , 2005, 52(11): 798–802
15 Wu J B, Xu G H, Yin Zh P. Robust adaptive control for a nonholonomic mobile robot with unknown parameters. Journal of Control Theory and Applications , 2009, 7(2): 212–218
doi: 10.1007/s11768-009-7130-6
16 Wu W G, Chen H T, Woo P Y. Time optimal path planning for a wheeled mobile robot. Journal of Robotic Systems , 2000, 17(11): 585–591
doi: 10.1002/1097-4563(200011)17:11<585::AID-ROB1>3.0.CO;2-7
17 Korayem M H, Ghariblu H, Basu A. Dynamic load-carrying capacity of mobile-base flexible joint manipulators. The International Journal of Advanced Manufacturing Technology , 2005, 25(1-2): 62–70
doi: 10.1007/s00170-003-1868-7
18 Dos Santos R R, Steffen V, Saramago S F P. Robot path planning in a constrained workspace by using optimal control techniques. Multibody System Dynamics , 2008, 19(1-2): 159–177
doi: 10.1007/s11044-007-9059-1
19 Korayem M H, Rahimi H N, Nikoobin A. Path planning of mobile elastic robotic arms by indirect approach of optimal control. International Journal of Advanced Robotic Systems , 2011, 8(1): 10–20
20 Korayem M H, Rahimi H N, Nikoobin A. Dynamic analysis, simulation and trajectory planning of mechanical mobile manipulators with flexible links and joints. Applied Mathematical Modelling , 2012
doi: 10.1016/j.apm.2011.10.002
21 Yamamoto Y, Yun X. Coordinating locomotion and manipulation of a mobile manipulator. IEEE Transactions on Automatic Control , 1994, 39(6): 1326–1332
doi: 10.1109/9.293207
22 Kirk D E. Optimal Control Theory: An Introduction. New Jersey: Prentice-Hall Inc., Upper Saddle River, 1970
[1] A. GESUALDO, A. IANNUZZO, F. PENTA, M. MONACO. Nonlinear dynamics of a wind turbine tower[J]. Front. Mech. Eng., 2019, 14(3): 342-350.
[2] Saeed ABDOLSHAH,Erfan SHOJAEI BARJUEI. Linear quadratic optimal controller for cable-driven parallel robots[J]. Front. Mech. Eng., 2015, 10(4): 344-351.
[3] Prases K. MOHANTY,Dayal R. PARHI. A new efficient optimal path planner for mobile robot based on Invasive Weed Optimization algorithm[J]. Front. Mech. Eng., 2014, 9(4): 317-330.
[4] M. H. KORAYEM, H. N. RAHIMI. Nonlinear dynamic analysis for elastic robotic arms[J]. Front Mech Eng, 2011, 6(2): 219-228.
[5] PU Jinhuan, YIN Chenliang, ZHANG Jianwu. Fuel optimal control of parallel hybrid electric vehicles[J]. Front. Mech. Eng., 2008, 3(3): 337-342.
[6] LU Yanjun, HEI Di, WANG Yuan, DAI Rong, LU Yanjun, LIU Heng, YU Lie. Stability and coupling dynamic behavior of nonlinear journal active electromagnetic bearing rotor system[J]. Front. Mech. Eng., 2008, 3(2): 193-199.
[7] LU Yanjun, LIU Heng, YU Lie, LI Qi, JIANG Ming, ZHANG Zhiyu. Analysis of stability and nonlinear response of rotor system with elliptical sliding bearing supports[J]. Front. Mech. Eng., 2007, 2(1): 37-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed