Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2012, Vol. 7 Issue (2) : 150-162    https://doi.org/10.1007/s11465-012-0325-4
RESEARCH ARTICLE
Synthesis of spherical parallel manipulator for dexterous medical task
Abdelbadia CHAKER1,2, Abdelfattah MLIKA1, Med Amine LARIBI2, Lotfi ROMDHANE1(), Sa?d ZEGHLOUL2
1. Laboratoire de Mécanique de Sousse, Ecole Nationale d’Ingénieurs de Sousse Université de Sousse, Sousse, Tunisia; 2. Institut PPRIME, CNRS, Université de Poitiers—ENSMA, UPR 3346, Poitiers, France
 Download: PDF(690 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper deals with the design and the analysis of a spherical parallel manipulator (SPM) for a haptic minimally invasive surgery application. First the medical task was characterized with the help of a surgeon who performed a suture technique called anastomosis. A Vicon system was used to capture the motion of the surgeon, which yielded the volume swept by the tool during the anastomosis operation. The identified workspace can be represented by a cone with a half vertex angle of 26°. A multi objective optimization procedure based on genetic algorithms was then carried out to find the optimal SPM. Two criteria were considered, i.e., task workspace and mechanism dexterity. The optimized SPM was then analyzed to determine the error on the orientation of the end effector as a function of the manufacturing errors of the different links of the mechanism.

Keywords spherical parallel manipulator (SPM)      anastomosis      haptic      motion capture      optimization      workspace      dexterity      genetic algorithm      manufacturing errors     
Corresponding Author(s): ROMDHANE Lotfi,Email:lotfi.romdhane@gmail.com   
Issue Date: 05 June 2012
 Cite this article:   
Abdelbadia CHAKER,Abdelfattah MLIKA,Med Amine LARIBI, et al. Synthesis of spherical parallel manipulator for dexterous medical task[J]. Front Mech Eng, 2012, 7(2): 150-162.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-012-0325-4
https://academic.hep.com.cn/fme/EN/Y2012/V7/I2/150
Fig.1  Anastomosis phases
Fig.2  Experimental setup (Pelvis Trainer+ tools)
Fig.3  Motion reconstitution
Fig.4  Tools workspace resulting from experimentations
Fig.5  DOF in MIS motion
Fig.6  Proposed architecture
Fig.7  Prototype of the SPM
Fig.8  CAD model of the proposed device
Fig.9  One leg geometric parameters
Fig.10  SPM workspace , for . (a) Cartesian space; (b) space
Fig.11  Prescribed workspace in Cartesian space for = 200
Fig.12  The workspace of the optimized SPM using the first criterion of workspace
Fig.13  Dexterity mapping for the workspace optimized SPM
Fig.14  Workspace of SPM with optimized workspace and dexterity
Fig.15  Dexterity distribution of the resulting SPM
Fig.16  Real link parameters
Fig.17  Model of the joint between link S and link S' taking into account manufacturing errors
Fig.18  The two closed loops of the SPM considering the manufacturing errors
Fig.19  Ideal link parameters
Fig.20  Link parameters with manufacturing errors
Fig.21  Rotation error of the platform
Manufacturing error/(')Error at 95% confidence/(°)Mean value/(°)
101.80.7
142.61
173.21.3
203.71.5
254.61.9
305.52.2
Tab.1  Characteristics of the rotation error distribution
Fig.22  Rotation error distribution for
1 Li T, Payandeh S. Design of spherical parallel mechanisms for application to laparoscopic surgery. Robotica , 2002, 20(2): 133–138
doi: 10.1017/S0263574701003873
2 Bulca F, Angeles J, Zsombor-Murray P J. On the workspace determination of spherical serial and platform mechanisms. Mechanism and Machine Theory , 1999, 34(3): 497–512
doi: 10.1016/S0094-114X(98)00019-6
3 Bai S. Optimum design of spherical parallel manipulator. Mechanism and Machine Theory , 2010, 45(2): 200–211
doi: 10.1016/j.mechmachtheory.2009.06.007
4 Gosselin C, St-Pierre E, Gangné M. On the development of the agile eye. Mechnaical Design, Control Issues and Experimentation. IEEE Robotics & Automation Magazine , 1996, 3(4): 29–37
doi: 10.1109/100.556480
5 Gosselin C, Lavoie E. On the kinematic design of spherical three-degree-of-freedom parallel manipulators. International Journal of Robotics reaserch . 1993, 12(4): 394–402
6 Bonev I A, Chablat D, Wenger P. Working and assebly modes of the agile eye. In: Proceedings of the IEEE International Conference on Robotics and Automation , 2006, Orlando-Florida, 2317–2322
7 Zanganeh K E, Angeles J. Kinematic isotropy and the optimum design of parallel manipulators. Internatinal Journal of Robotics Reaserch , 1997, 2(4): 16
8 Bonev I A, Gosselin C M. Singularity loci of spherical parallel mechanisms. In: Proceedings of the IEEE International Conference on Robotics and Automation , 2005, 2957–2962
9 Gosselin C, Wang J. Singularity loci of a special class pf spherical three-degree-of-freedom parallel machanisms with revolute actuator. International Journal of Robotic Reaserches , 2002, 21(7): 649–659
doi: 10.1177/027836402322023231
10 Wu G, Cavanagh P R. ISB recommendations for standardization in the reporting of kinematic data. Journal of Biomechanics , 1995, 28(10): 1257–1261
doi: 10.1016/0021-9290(95)00017-C pmid:8550644
11 Karouia M, Hervé J M. Asymmetrical 3-dof spherical parallel mechanisms. European Journal of Mechanics-A/Solids , 2005, 24(1): 47–57
doi: 10.1016/j.euromechsol.2004.10.001
12 di Gregorio R. A new parallel wrist using only revolute pairs: The 3-RUU wrist. Robotica , 2001, 19(03): 305–309
doi: 10.1017/S0263574700003192
13 Al-Widyan K, Ma X Q, Angeles J. The robust design of parallel spherical robots. Mechanism and Machine Theory , 2011, 46(3): 335–343
doi: 10.1016/j.mechmachtheory.2010.11.002
14 Karouia M, Hervé J M. Enumération de mécanismes parallèles sphériaques isostatiques. In: 16ème Congrès Fran?ais de Mécanique , 2003, Nice
15 Gleicher M. Retargetting motion to new characters. In: Proceedings of the 25th annual Conference on Computer Graphics and Interactive Techniques , 1998, 33–42
16 Merlet J P. Jacobian, manipualbility, condition number and acuuracy of parallel robots. Journal of Mechanical Design . 2006, 128(1): 199–206
17 Laribi M A, Romdhane L, Zeghloul S. Analysis and dimensional synthesis of the DELTA robot for a prescribed workspace. Mechanism and Machine Theory , 2007, 42(7): 859–870
doi: 10.1016/j.mechmachtheory.2006.06.012
18 Laribi M A, Mlika A, Romdhane L, Zeghloul S. Criteria optimum design of 3 DOF translational parallel manipulators. In: Proceedings of the 13rd IFToMM World Congress , 2011, Guanajuato
[1] Yongliang YUAN, Liye LV, Shuo WANG, Xueguan SONG. Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer[J]. Front. Mech. Eng., 2020, 15(3): 406-416.
[2] Peng WEI, Wenwen WANG, Yang YANG, Michael Yu WANG. Level set band method: A combination of density-based and level set methods for the topology optimization of continuums[J]. Front. Mech. Eng., 2020, 15(3): 390-405.
[3] Shuo ZHU, Hua ZHANG, Zhigang JIANG, Bernard HON. A carbon efficiency upgrading method for mechanical machining based on scheduling optimization strategy[J]. Front. Mech. Eng., 2020, 15(2): 338-350.
[4] Zhen-Pei WANG, Zhifeng XIE, Leong Hien POH. An isogeometric numerical study of partially and fully implicit schemes for transient adjoint shape sensitivity analysis[J]. Front. Mech. Eng., 2020, 15(2): 279-293.
[5] Song ZHANG, Lelun WANG, Anze YI, Honggang GU, Xiuguo CHEN, Hao JIANG, Shiyuan LIU. Dynamic modulation performance of ferroelectric liquid crystal polarization rotators and Mueller matrix polarimeter optimization[J]. Front. Mech. Eng., 2020, 15(2): 256-264.
[6] Emmanuel TROMME, Atsushi KAWAMOTO, James K. GUEST. Topology optimization based on reduction methods with applications to multiscale design and additive manufacturing[J]. Front. Mech. Eng., 2020, 15(1): 151-165.
[7] Xianda XIE, Shuting WANG, Ming YE, Zhaohui XIA, Wei ZHAO, Ning JIANG, Manman XU. Isogeometric topology optimization based on energy penalization for symmetric structure[J]. Front. Mech. Eng., 2020, 15(1): 100-122.
[8] Jiali ZHAO, Shitong PENG, Tao LI, Shengping LV, Mengyun LI, Hongchao ZHANG. Energy-aware fuzzy job-shop scheduling for engine remanufacturing at the multi-machine level[J]. Front. Mech. Eng., 2019, 14(4): 474-488.
[9] Hong PENG, Han WANG, Daojia CHEN. Optimization of remanufacturing process routes oriented toward eco-efficiency[J]. Front. Mech. Eng., 2019, 14(4): 422-433.
[10] Weichang KONG, Fei QIAO, Qidi WU. A naive optimization method for multi-line systems with alternative machines[J]. Front. Mech. Eng., 2019, 14(4): 377-392.
[11] Manman XU, Shuting WANG, Xianda XIE. Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency[J]. Front. Mech. Eng., 2019, 14(2): 222-234.
[12] Jikai LIU, Qian CHEN, Xuan LIANG, Albert C. TO. Manufacturing cost constrained topology optimization for additive manufacturing[J]. Front. Mech. Eng., 2019, 14(2): 213-221.
[13] Mariana MORETTI, Emílio C. N. SILVA. Topology optimization of piezoelectric bi-material actuators with velocity feedback control[J]. Front. Mech. Eng., 2019, 14(2): 190-200.
[14] Junjie ZHAN, Yangjun LUO. Robust topology optimization of hinge-free compliant mechanisms with material uncertainties based on a non-probabilistic field model[J]. Front. Mech. Eng., 2019, 14(2): 201-212.
[15] Long JIANG, Yang GUO, Shikui CHEN, Peng WEI, Na LEI, Xianfeng David GU. Concurrent optimization of structural topology and infill properties with a CBF-based level set method[J]. Front. Mech. Eng., 2019, 14(2): 171-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed