Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2012, Vol. 7 Issue (4) : 433-438    https://doi.org/10.1007/s11465-012-0336-1
RESEARCH ARTICLE
Elastic analysis of heterogeneous thick-walled spherical pressure vessels with parabolic varying properties
Keyhan KARAMI, Majid ABEDI, Mohammad ZAMANI NEJAD(), Mohammad Hassan LOTFIAN
Mechanical Engineering Department, Yasouj University, Yasouj 75914-353, Iran
 Download: PDF(432 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

On the basis of plane elasticity theory (PET), the displacement and stress components in a thick-walled spherical pressure vessels made of heterogeneous materials subjected to internal and external pressure is developed. The mechanical properties except the Poisson’s ratio are assumed to obey the parabolic variations throughout the thickness. Effect of material inhomogeneity on the elastic deformations and stresses is investigated. The analytical solutions and the solutions carried out through the FEM have a good agreement. The values used in this study are arbitrary chosen to demonstrate the effect of inhomogeneity on displacements, and stresses distributions.

Keywords thick-walled spherical vessels      heterogeneous materials      FGM      FEM      parabolic varying properties     
Corresponding Author(s): ZAMANI NEJAD Mohammad,Email:m.zamani.n@gmail.com   
Issue Date: 05 December 2012
 Cite this article:   
Keyhan KARAMI,Majid ABEDI,Mohammad ZAMANI NEJAD, et al. Elastic analysis of heterogeneous thick-walled spherical pressure vessels with parabolic varying properties[J]. Front Mech Eng, 2012, 7(4): 433-438.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-012-0336-1
https://academic.hep.com.cn/fme/EN/Y2012/V7/I4/433
Fig.1  Configuration of a FGM hollow sphere
Fig.2  Radial distribution of Modulus of elasticity
Fig.3  Radial distribution of radial displacement ()
Fig.4  Radial distribution of radial stress ()
Fig.5  Radial distribution of circumferential stress ()
Fig.6  Comparison of radial displacement in a FGM thick hollow sphere () to those in homogeneous thick hollow sphere ()
Fig.7  Comparison of stresses in a FGM thick hollow sphere () to those in homogeneous thick hollow sphere ()
Fig.8  Finite elements mesh region ( and )
Fig.9  Radial displacement obtained from ANSYS code in a FGM sphere ( and )
Fig.10  Radial stress obtained from ANSYS code in a FGM sphere ( and )
Fig.11  Circumferential stress obtained from ANSYS code in a FGM sphere ( and )
1 Zhang H W, Wu J K, Lu J, Fu Z D. Extended multiscale finite element method for mechanical analysis of heterogeneous materials. Acta Mechanica Sinica , 2010, 26(6): 899-920
doi: 10.1007/s10409-010-0393-9
2 Tutuncu N, Ozturk M. Exact solutions for stresses in functionally graded pressure vessels. Composites. Part B, Engineering , 2001, 32(8): 683-686
doi: 10.1016/S1359-8368(01)00041-5
3 You L H, Zhang J J, You X Y. Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials. International Journal of Pressure Vessels and Piping , 2005, 82(5): 347-354
doi: 10.1016/j.ijpvp.2004.11.001
4 Chen Y Z, Lin X Y. Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials. Computational Materials Science , 2008, 44(2): 581-587
doi: 10.1016/j.commatsci.2008.04.018
5 Li X F, Peng X L, Kang Y A. Pressurized hollow spherical vessels with arbitrary radial nonhomogeneity. AIAA Journal , 2009, 47(9): 2263-2265
doi: 10.2514/1.41995
6 Tutuncu N, Temel B. A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres. Composite Structures , 2009, 91(3): 385-390
doi: 10.1016/j.compstruct.2009.06.009
7 Nejad M Z, Rahimi G H, Ghannad M. Set of field equations for thick shell of revolution made of functionally graded materials in curvilinear coordinate system. Mechanika , 2009, 77(3): 18-26
8 Borisov A V. Elastic analysis of multilayered thick-walled spheres under external load. Mechanika , 2010, 84(4): 28-32
9 Nie G J, Zhong Z, Batra R C. Material tailoring for functionally graded hollow cylinders and spheres. Composites Science and Technology , 2011, 71(5): 666-673
doi: 10.1016/j.compscitech.2011.01.009
10 Srinath L S. Advanced Mechanics of Solids. 2nd Ed. New York: McGraw Hill, 2003
11 Abramowitz M, Stegun A I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 10th ed. Washington, D.C.: US Government Printing Office, 1972
[1] Markus J. GEISS, Jorge L. BARRERA, Narasimha BODDETI, Kurt MAUTE. A regularization scheme for explicit level-set XFEM topology optimization[J]. Front. Mech. Eng., 2019, 14(2): 153-170.
[2] Tomoki SAKURAI, Shin MORISHITA. Seismic response reduction of a three-story building by an MR grease damper[J]. Front. Mech. Eng., 2017, 12(2): 224-233.
[3] Rongjing ZHANG,Lihui LANG,Rizwan ZAFAR. FEM-based strain analysis study for multilayer sheet forming process[J]. Front. Mech. Eng., 2015, 10(4): 373-379.
[4] Bhaskar Kumar MADETI,Srinivasa Rao CHALAMALASETTI,S K Sundara siva rao BOLLA PRAGADA. Biomechanics of knee joint – A review[J]. Front. Mech. Eng., 2015, 10(2): 176-186.
[5] Zhaoxu QI,Bin LI,Liangshan XIONG. An improved algorithm for McDowell’s analytical model of residual stress[J]. Front. Mech. Eng., 2014, 9(2): 150-155.
[6] Van Thanh NGO, Danmei XIE, Yangheng XIONG, Hengliang ZHANG, Yi YANG. Dynamic analysis of a rig shafting vibration based on finite element[J]. Front Mech Eng, 2013, 8(3): 244-251.
[7] Li LI, Michael Yu WANG, Peng WEI. XFEM schemes for level set based structural optimization[J]. Front Mech Eng, 2012, 7(4): 335-356.
[8] Jianjiang YANG, Qingsheng YANG, Lianhua MA, Wei LIU, . Moisture diffusion behavior of permeable fiber-reinforced polymer composite[J]. Front. Mech. Eng., 2010, 5(3): 347-352.
[9] SHI Shengjun, CHEN Weishan, LIU Junkao, ZHAO Xuetao. Ultrasonic linear motor using the L-B mode Langevin transducer with an exponential horn[J]. Front. Mech. Eng., 2008, 3(2): 212-217.
[10] TANG Kelun, ZHANG Xiangwei, CHENG Siyuan, XIONG Hanwei, ZHANG Hong. Research on physical shape preserving curve reconstruction[J]. Front. Mech. Eng., 2007, 2(3): 305-309.
[11] LEI Yanni, CHEN Guoding. Analysis of the dynamic hysteresis characteristic of finger seal[J]. Front. Mech. Eng., 2007, 2(1): 32-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed