Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2012, Vol. 7 Issue (4) : 439-444    https://doi.org/10.1007/s11465-012-0337-0
RESEARCH ARTICLE
Effects of process parameters on surface roughness in abrasive waterjet cutting of aluminium
M. CHITHIRAI PON SELVAN1(), N. MOHANA SUNDARA RAJU2, H. K. SACHIDANANDA3
1. Karpagam University, Coiambatore 641001, India; 2. Mahendra Institute of Technology, Namakkal 637503, India; 3. Department of Engineering, Manipal University, Dubai 345050, United Arab Emirates
 Download: PDF(178 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Abrasive waterjet cutting is a novel machining process capable of processing wide range of hard-to-cut materials. Surface roughness of machined parts is one of the major machining characteristics that play an important role in determining the quality of engineering components. This paper shows the influence of process parameters on surface roughness (Ra) which is an important cutting performance measure in abrasive waterjet cutting of aluminium. Taguchi’s design of experiments was carried out in order to collect surface roughness values. Experiments were conducted in varying water pressure, nozzle traverse speed, abrasive mass flow rate and standoff distance for cutting aluminium using abrasive waterjet cutting process. The effects of these parameters on surface roughness have been studied based on the experimental results.

Keywords abrasive waterjet      aluminium      garnet      water pressure      mass flow rate      traverse speed      standoff distance     
Corresponding Author(s): SELVAN M. CHITHIRAI PON,Email:mcpselvan@yahoo.com   
Issue Date: 05 December 2012
 Cite this article:   
M. CHITHIRAI PON SELVAN,N. MOHANA SUNDARA RAJU,H. K. SACHIDANANDA. Effects of process parameters on surface roughness in abrasive waterjet cutting of aluminium[J]. Front Mech Eng, 2012, 7(4): 439-444.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-012-0337-0
https://academic.hep.com.cn/fme/EN/Y2012/V7/I4/439
1 Hascalik A, Caydas U, Gurun H. Effect of traverse speed on abrasive waterjet machining of Ti-6Al-4V alloy. Materials & Design , 2007, 28: 1953-1957
2 Momber A, Kovacevic R. Principles of Abrasive Waterjet Machining. London: Springer-Verlag, 1998
3 Hashish M. A model for abrasive waterjet (AWJ) machining. Transactions of ASME Journal of Engineering Materials and Technology , 1989, 111(2): 154-162
doi: 10.1115/1.3226448
4 Siores E, Wong W C K, Chen L, Wager J G. Enhancing abrasive waterjet cutting of ceramics by head oscillation techniques. Ann CIRP , 1996, 45(1): 215-218
doi: 10.1016/S0007-8506(07)63073-X
5 Wang J. Abrasive Waterjet Machining of Engineering Materials. Uetikon-Zuerich: Trans Tech Publications, 2003.
6 Azmir M A, Ahsan A K. Investigation on glass/epoxy composite surfaces machined by abrasive waterjet machining. Journal of Materials Processing Technology , 2008, 198(1-3): 122-128
doi: 10.1016/j.jmatprotec.2007.07.014
7 Ma C, Deam R T. A correlation for predicting the kerf profile from abrasive waterjet cutting. Experimental Thermal and Fluid Science , 2006, 30(4): 337-343
doi: 10.1016/j.expthermflusci.2005.08.003
8 Kovacevic R. Monitoring the depth of abrasive waterjet penetration. International Journal of Machine Tools & Manufacture , 1992, 32(5): 725-736
doi: 10.1016/0890-6955(92)90026-D
9 Hashish M. Optimization factors in abrasive waterjet machining. Transactions of the ASME: Journal of Engineering for Industry , 1991, 113: 29-37
10 Rozario Jegaraj J J, Ramesh Babu N. A soft computing approach for controlling the quality of cut with abrasive waterjet cutting system experiencing orifice and focusing tube wear. Journal of Materials Processing Technology , 2007, 185(1-3): 217-227
doi: 10.1016/j.jmatprotec.2006.03.124
11 Shanmugam D K, Wang J, Liu H. Minimization of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique. International Journal of Machine Tools & Manufacture , 2008, 48(14): 1527-1534
doi: 10.1016/j.ijmachtools.2008.07.001
12 Shanmugam D K, Masood S H. An investigation of kerf characteristics in abrasive waterjet cutting of layered composites. International Journal of Material Processing Technology , 2009, 209(8): 3887-3893
doi: 10.1016/j.jmatprotec.2008.09.001
13 Lemma E, Chen L, Siores E, Wang J. Optimising the AWJ cutting process of ductile materials using nozzle oscillation technique. International Journal of Machine Tools & Manufacture , 2002, 42(7): 781-789
doi: 10.1016/S0890-6955(02)00017-2
14 Wang J. Predictive depth of jet penetration models for abrasive waterjet cutting of alumina ceramics. International Journal of Mechanical Sciences , 2007, 49(3): 306-316
doi: 10.1016/j.ijmecsci.2006.09.005
15 Farhad K, Hamid K A. A statistical approach for predicting and optimizing depth of cut in AWJ machining for 6063-T6 Al alloy. World Academy of Science, Engineering and Technology , 2009, 59
16 Chithirai Pon Selvan M, Mohana Sundara Raju N. Selection of process parameters in abrasive waterjet cutting of copper. International Journal of Advanced Engineering Sciences and Technologies , 2011, 7(2): 254-257
17 Arola D, Ramulu M. A study of kerf characteristics in abrasive waterjet machining of graphite/epoxy composites. Journal of Engineering Materials and Technology , 1993, 45(66): 125-151
18 Wang J, Wong W C K. A study of abrasive waterjet cutting of metallic coated sheet steels. International Journal of Machine Tools & Manufacture , 1999, 39(6): 855-870
doi: 10.1016/S0890-6955(98)00078-9
19 Hocheng H, Tsai H Y, Shiue J J, Wang B.Feasibility study of abrasive waterjet milling of fiber-reinforced plastics. Journal of Manufacturing Science and Engineering , 1997, 119: 133-142
[1] Omotoyosi H. FAMODIMU, Mark STANFORD, Chike F. ODUOZA, Lijuan ZHANG. Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite[J]. Front. Mech. Eng., 2018, 13(4): 520-527.
[2] Kirsten BOBZIN, Lidong ZHAO, Thomas SCHLAEFER, Thomas WARDA, . Application of cold spraying for flux-free brazing of aluminium alloy 6060[J]. Front. Mech. Eng., 2010, 5(3): 256-260.
[3] Kirsten BOBZIN, Lidong ZHAO, Thomas SCHLAEFER, Thomas WARDA, . Influence of the filler materials on flux-free brazing of pure aluminium (1050)[J]. Front. Mech. Eng., 2010, 5(1): 47-51.
[4] Jun WANG. Depth of cut models for multipass abrasive waterjet cutting of alumina ceramics with nozzle oscillation[J]. Front. Mech. Eng., 2010, 5(1): 19-32.
[5] BOBZIN Kirsten, ZHAO Lidong, ERNST Felix, RICHARDT Katharina. Flux-free brazing of Mg-containing aluminium alloys by means of cold spraying[J]. Front. Mech. Eng., 2008, 3(4): 355-359.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed