Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2012, Vol. 7 Issue (4) : 394-400    https://doi.org/10.1007/s11465-012-0347-y
RESEARCH ARTICLE
Investigations on color variations of Morpho rhetenor butterfly wing scales
Guanglan LIAO, Haibo ZUO, Xuan JIANG, Xuefeng YANG, Tielin SHI()
State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(672 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Experiments and simulations are carried out to investigate the optical properties of Morpho rhetenor butterfly wing scales. The upper surface of a male Morpho rhetenor butterfly wing presents a single-layer of scales, the microstructures of which are responsible for the brilliant blue color. The color varies from cyan blue to yellow green and soon afterwards returns back to cyan blue when some ethanol is dropped on the upper surface. At the start of the ethanol volatilization process, the reflection spectrum remains stable. As the ethanol further volatilizes, the peak reflectance decreases slightly, then increases dramatically. Meanwhile, the peak wavelength keeps approximately constant, then decreases, and keeps almost stable at the end of the process. Therefore, the optical properties depend strongly on the varying ambient conditions, including the refractive index and the thickness of the packing medium. Moreover, the possible causes for the scales in dark green region after several dropping ethanol experiments are clarified. This research benefits our understanding of the color variation mechanisms of the wing scales, and provides inspiration for further studies and applications.

Keywords Morpho rhetenor      microstructures      color variations      ambient medium     
Corresponding Author(s): SHI Tielin,Email:tlshi@mail.hust.edu.cn   
Issue Date: 05 December 2012
 Cite this article:   
Guanglan LIAO,Haibo ZUO,Xuan JIANG, et al. Investigations on color variations of Morpho rhetenor butterfly wing scales[J]. Front Mech Eng, 2012, 7(4): 394-400.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-012-0347-y
https://academic.hep.com.cn/fme/EN/Y2012/V7/I4/394
Fig.1  Schematic of the experimental system
Fig.2  (a) Photograph of a male butterfly; (b) optical microscopy image of the scales on the wing; (c) optical microscopy image of a ground scale
Fig.3  (a) Cross-sectional TEM image of a ground scale; (b) schematic of the two-dimensional model
Fig.4  Reflection spectra for the scales in air
Fig.5  Optical microscopy images of the color variation process of the scales with some ethanol dropped on the upper surface
Fig.6  (a) Measured reflection spectra as a function of the ethanol volatilization time; (b) simulated reflection spectra as a function of the ethanol thickness
Fig.7  (a) Measured reflectance variations . the ethanol volatilization time; (b) points corresponding to curves - in (a); (c) simulated reflectance variations vs. the ethanol thickness; (d) points corresponding to curves - in (c)
Fig.8  (a) The measured reflection spectrum . the number of dropping ethanol experiments. The insets are the optical microscopy images of the scales corresponding to the curves; (b) points corresponding to curves - in (a)
Fig.9  (a) Appearance changes of the scales before ethanol experiment; (b) after 1 dropping ethanol experiment; (c) 3 dropping ethanol experiments
Fig.10  (a) SEM photo of original butterfly scales; (b) SEM photo of scales in dark green region after dropping ethanol experiments
1 Ghiradella H. Light and color on the wing: Structural colors in butterflies and moths. Applied Optics , 1991, 30(24): 3492–3500
doi: 10.1364/AO.30.003492 pmid:20706416
2 Kinoshita S, Yoshioka S, Miyazaki J. Physics of structural colors. Reports on Progress in Physics , 2008, 71(7): 076401
doi: 10.1088/0034-4885/71/7/076401
3 Gu Z Z, Fujishima A, Sato O. Biomimetic titanium dioxide film with structural color and extremely stable hydrophilicity. Applied Physics Letters , 2004, 85(21): 5067–5069
doi: 10.1063/1.1825052
4 Michelson A A. On metallic colouring in birds and insects. Philosophical Magazine , 1911, 21(124): 554–567
doi: 10.1080/14786440408637061
5 Rayleigh L. On the optical character of some brilliant animal colours. Philosophical Magazine , 1919, 37(217): 98–111
doi: 10.1080/14786440108635867
6 Mason C W. Structural colours in insects, part II. Journal of Physical Chemistry , 1927, 31(3): 321–354
doi: 10.1021/j150273a001
7 Anderson T F, Richards A G. An electron microscope study of some structural colours of insects. Journal of Applied Physics , 1942, 13(12): 748–758
doi: 10.1063/1.1714827
8 Ghiradella H, Aneshansley D, Eisner T, Silberglied R E, Hinton H E. Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales. Science , 1972, 178(4066): 1214–1217
doi: 10.1126/science.178.4066.1214 pmid:17748984
9 Huxley J. The coloration of Papilio zalmoxis and P. antimachus and the discovery of Tyndall blue in butterflies. Proceedings of the Royal Society of London. Series B. Biological Sciences , 1976, 193(1113): 441–453
doi: 10.1098/rspb.1976.0056
10 Vukusic P, Sambles J R, Lawrence C R, Wootton R J. Quantified interference and diffraction in single Morpho butterfly scales. Proceedings. Biological Sciences , 1999, 266(1427): 1403–1411
doi: 10.1098/rspb.1999.0794
11 Vukusic P, Sambles J R. Photonic structures in biology. Nature , 2003, 424(6950): 852–855
doi: 10.1038/nature01941 pmid:12917700
12 Gralak B, Tayeb G, Enoch S. Morpho butterflies wings color modeled with lamellar grating theory. Optics Express , 2001, 9(11): 567–578
doi: 10.1364/OE.9.000567 pmid:19424374
13 Mann S E, Miaoulis I N, Wong P Y. Spectral imaging, reflectivity measurements, and modeling of iridescent butterfly scale structures. Optical Engineering (Redondo Beach) , 2001, 40(10): 2061–2068
doi: 10.1117/1.1404431
14 Kinoshita S, Yoshioka S, Kawagoe K. Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proceedings, Biological Sciences , 2002, 269(1499): 1417–1421
doi: 10.1098/rspb.2002.2019 pmid:12137569
15 Plattner L. Optical properties of the scales of Morpho rhetenor butterflies: theoretical and experimental investigation of the back-scattering of light in the visible spectrum. Journal of the Royal Society, Interface , 2004, 1(1): 49–59
doi: 10.1098/rsif.2004.0006 pmid:16849152
16 Banerjee S, Cole J B, Yatagai T. Colour characterization of a Morpho butterfly wing-scale using a high accuracy nonstandard finite-difference time-domain method. Micron (Oxford, England) , 2007, 38(2): 97–103
doi: 10.1016/j.micron.2006.07.004 pmid:16942885
17 Banerjee S, Zhu D. Optical characterization of iridescent wings of morpho butterflies using a high accuracy nonstandard finite-difference time-domain algorithm. Optical Review , 2007, 14(6): 359–361
doi: 10.1007/s10043-007-0359-8
18 Lee R T, Smith G S. Detailed electromagnetic simulation for the structural color of butterfly wings. Applied Optics , 2009, 48(21): 4177–4190
doi: 10.1364/AO.48.004177 pmid:19623232
19 Zhu D, Kinoshita S, Cai D S, Cole J B. Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: Effects of alternately stacked shelves and ridge density. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2009, 80(5 Pt 1): 051924
doi: 10.1103/PhysRevE.80.051924 pmid:20365023
20 Berthier S, Charron E, Boulenguez J. Morphological structure and optical properties of the wings of Morphidae. Insect Science , 2006, 13(2): 145–157
doi: 10.1111/j.1744-7917.2006.00077.x
21 Berthier S, Charron E, Da Silva A. Determination of the cuticle index of the scales of the iridescent butterfly Morpho Menelaus. Optics Communications , 2003, 228(4-6): 349–356
doi: 10.1016/j.optcom.2003.10.032
22 Moharam M G, Grann E B, Pommet D A, Gaylord T K. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. Journal of the Optical Society of America. A, Optics, Image Science, and Vision , 1995, 12(5): 1068–1076
doi: 10.1364/JOSAA.12.001068
23 Moharam M G, Pommet D A, Grann E B, Gaylord T K. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach. Journal of the Optical Society of America. A, Optics, Image Science, and Vision , 1995, 12(5): 1077–1086
doi: 10.1364/JOSAA.12.001077
24 Kinoshita S, Yoshioka S, Fujii Y, Okamoto N. Photophysics of structural color in the Morpho buterflies. Forma , 2002, 17: 103–121
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed