Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2012, Vol. 7 Issue (4) : 427-432    https://doi.org/10.1007/s11465-012-0350-3
RESEARCH ARTICLE
Simulation and analysis of grinding wheel based on Gaussian mixture model
Yulun CHI(), Haolin LI
Mechanical Engineering College, University of Shanghai for Science and Technology, Shanghai 200093, China
 Download: PDF(459 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This article presents an application of numerical simulation technique for the generation and analysis of the grinding wheel surface topographies. The ZETA 20 imaging and metrology microscope is employed to measure the surface topographies. The Gaussian mixture model (GMM) is used to transform the measured non-Gaussian field to Gaussian fields, and the simulated topographies are generated. Some numerical examples are used to illustrate the viability of the method. It shows that the simulated grinding wheel topographies are similar with the measured and can be effective used to study the abrasive grains and grinding mechanism.

Keywords grinding wheel      3D topographies measurement      Gaussian mixture model      simulation     
Corresponding Author(s): CHI Yulun,Email:chiyulun@163.com   
Issue Date: 05 December 2012
 Cite this article:   
Yulun CHI,Haolin LI. Simulation and analysis of grinding wheel based on Gaussian mixture model[J]. Front Mech Eng, 2012, 7(4): 427-432.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-012-0350-3
https://academic.hep.com.cn/fme/EN/Y2012/V7/I4/427
1 Hegeman J B J W. Fundamentals of grinding: Surface conditions of ground materials. Dissertation for the Doctoral Degree. Netherlands: University of Groningen, 2000
2 Fu Y C, Xu H J, Xu J H. Optimization design of grinding wheel topography for high efficency grinding. Journal of Materials Processing Technology , 2002, 129(1-3): 118-122
doi: 10.1016/S0924-0136(02)00588-5
3 Xie J, Wei F, Zheng J H, Tamaki J, Kubo A. 3D laser investigation on micron-scale grain protrusion topography of truncated diamond grinding wheel for precision grinding performance. International Journal of Machine Tools & Manufacture , 2011, 51(5): 411-419
doi: 10.1016/j.ijmachtools.2011.01.010
4 Cai R, Rowe W B. Assessment of vitrified CBN wheels for precision grinding. International Journal of Machine Tools & Manufacture , 2004, 44(12,13): 1391-1402
doi: 10.1016/j.ijmachtools.2004.04.004
5 Nguyen T A, Butler D L. Simulation of precision grinding process,part 1:generation of the grinding wheel surface. International Journal of Machine Tools & Manufacture , 2005, 45(11): 1321-1328
doi: 10.1016/j.ijmachtools.2005.01.005
6 Xiong G, Feng C, Ji L, Chao F, Liang J. Dynamical Gaussian mixture model for tracking elliptical living objects. Pattern Recognition Letters , 2006, 27(7): 838-842
doi: 10.1016/j.patrec.2005.11.015
7 Yan L, Rong Y M, Jiang F, Zhou Z X. Three-dimension surface characterization of grinding wheel using white light interferometer. The International Journal of Advanced Manufacturing Technology , 2011, 55(1-4): 133-141
doi: 10.1007/s00170-010-3054-z
8 Huo F W. Measurement and evaluation of the surface topography of fine diamond grinding wheel. Chinese Journal of Mechanical Engineering , 2007, 43(10): 108-113
doi: 10.3901/JME.2007.10.108
9 Shinozuka M, Deodatis G. Simulation of multi-dimensional Gaussian stochastic fields by spectral representation. Applied Mechanics Reviews , 1996, 49(1): 29-53
doi: 10.1115/1.3101883
10 Chakrabarti S, Paul S. Numetical modelling of surface topography in superabrasive grinding. International Journal of Advanced Manufacturing Technology , 2008, 39(1,2): 29-38
doi: 10.1007/s00170-007-1201-y
11 Balasz B, Szatkiewicz T, Krolikowski T. Grinding Wheel Topography Modeling with Application of an Elastic Neural Network. Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence . 2007, 4682: 83-90
12 Blunt L, Ebdon S. The application of three-dimensional surface measurement techniques to characterizing grinding wheel topography. International Journal of Machine Tools & Manufacture , 1996, 36(11): 1207-1226
doi: 10.1016/0890-6955(96)00041-7
[1] Xiaojun GU, Xiuzhong SU, Jun WANG, Yingjie XU, Jihong ZHU, Weihong ZHANG. Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy wires[J]. Front. Mech. Eng., 2020, 15(4): 547-557.
[2] Sheng WANG, Jun WANG, Yingjie XU, Weihong ZHANG, Jihong ZHU. Compressive behavior and energy absorption of polymeric lattice structures made by additive manufacturing[J]. Front. Mech. Eng., 2020, 15(2): 319-327.
[3] Wei LIU, Hongzhong QI, Xintian LIU, Yansong WANG. Evaluation of regenerative braking based on single-pedal control for electric vehicles[J]. Front. Mech. Eng., 2020, 15(1): 166-179.
[4] Yanfeng PENG, Junsheng CHENG, Yanfei LIU, Xuejun LI, Zhihua PENG. An adaptive data-driven method for accurate prediction of remaining useful life of rolling bearings[J]. Front. Mech. Eng., 2018, 13(2): 301-310.
[5] Elijah Kwabena ANTWI, Kui LIU, Hao WANG. A review on ductile mode cutting of brittle materials[J]. Front. Mech. Eng., 2018, 13(2): 251-263.
[6] Yun ZHANG, Wenjie YU, Junjie LIANG, Jianlin LANG, Dequn LI. Three-dimensional numerical simulation for plastic injection-compression molding[J]. Front. Mech. Eng., 2018, 13(1): 74-84.
[7] Xiaoguang GUO,Qiang LI,Tao LIU,Renke KANG,Zhuji JIN,Dongming GUO. Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials[J]. Front. Mech. Eng., 2017, 12(1): 89-98.
[8] Shaohui YIN,Hongpeng JIA,Guanhua ZHANG,Fengjun CHEN,Kejun ZHU. Review of small aspheric glass lens molding technologies[J]. Front. Mech. Eng., 2017, 12(1): 66-76.
[9] Yang LI,Yunxin WU,Hai GONG,Xiaolei FENG. Air bearing center cross gap of neutron stress spectrometer sample table support system[J]. Front. Mech. Eng., 2016, 11(4): 403-411.
[10] Huaxin LIU,Marco CECCARELLI,Qiang HUANG. Design and simulation of a cable-pulley-based transmission for artificial ankle joints[J]. Front. Mech. Eng., 2016, 11(2): 170-183.
[11] Mingfeng WANG,Marco CECCARELLI,Giuseppe CARBONE. A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation[J]. Front. Mech. Eng., 2016, 11(2): 144-158.
[12] Jonnathan D. SANTOS,Jorge I. FAJARDO,Alvaro R. CUJI,Jaime A. GARCÍA,Luis E. GARZÓN,Luis M. LÓPEZ. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite short natural fibers reinforced injection molded[J]. Front. Mech. Eng., 2015, 10(3): 287-293.
[13] Pankaj SHARMA,Ajai JAIN. Analysis of dispatching rules in a stochastic dynamic job shop manufacturing system with sequence-dependent setup times[J]. Front. Mech. Eng., 2014, 9(4): 380-389.
[14] Jie OUYANG, Bin LI, Shihua GONG. Dymola-based multi-parameters integrated optimization for high speed transfer system of LED chip sorter[J]. Front Mech Eng, 2013, 8(2): 118-126.
[15] Alin STOICA, Doina PISLA, Szilaghyi ANDRAS, Bogdan GHERMAN, Bela-Zoltan GYURKA, Nicolae PLITEA. Kinematic, workspace and singularity analysis of a new parallel robot used in minimally invasive surgery[J]. Front Mech Eng, 2013, 8(1): 70-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed