Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front Mech Eng    2012, Vol. 7 Issue (4) : 376-384    https://doi.org/10.1007/s11465-012-0352-1
REVIEW ARTICLE
Surgical robotics: A look-back of latest advancement and bio-inspired ways to tackle existing challenges
Yang LIU1, Jing LIU2()
1. Department of Automotive Engineering, Tsinghua University, Beijing 100084, China; 2. Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
 Download: PDF(437 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This article is dedicated to present a review on existing challenges and latest developments in surgical robotics in attempts to overcome the obstacles lying behind. Rather than to perform an exhaustive evaluation, we would emphasize more on the new insight by digesting the emerging bio-inspired surgical technologies with potentials to revolutionize the field. Typical approaches, possible applications, advantages and technical challenges were discussed. Evolutions of surgical robotics and future trends were analyzed. It can be found that, the major difficulties in the field of surgical robots may not be properly addressed by only using conventional approaches. As an alternative, bio-inspired methods or materials may shed light on new innovations. While endeavors to deal with existing strategies still need to be made, attentions should be paid to also borrow ideas from nature.

Keywords minimally invasive surgery      surgical robotics      haptic feedback      miniaturization      bio-inspiration      bionics     
Corresponding Author(s): LIU Jing,Email:jliubme@tsinghua.edu.cn   
Issue Date: 05 December 2012
 Cite this article:   
Yang LIU,Jing LIU. Surgical robotics: A look-back of latest advancement and bio-inspired ways to tackle existing challenges[J]. Front Mech Eng, 2012, 7(4): 376-384.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-012-0352-1
https://academic.hep.com.cn/fme/EN/Y2012/V7/I4/376
Fig.1  da Vinci surgical system (Intuitive Surgical, Inc., Sunnyvale, CA)
Fig.2  Trajectory of a human operator palpating a dice, sliding from to right in positive -axis []
Fig.3  Tactile sensing instrument for measurement of distributed pressure profiles []
Fig.4  Prototype NOTES robot developed by Lehman and coworkers in 2009 []
Fig.5  (a) Prototype developed by Lehman and coworkers in 2011 []; (b) prototype developed by Wortman and coworkers in 2011 []; (c) prototype developed by Wortman and coworkers in 2012 []
Fig.6  Schematic diagram of the BioTAC biomimetic tactile sensor []
Fig.7  Bio-inspiration for a miniaturized robot inside the abdomen []
Fig.8  Control of locomotion in green june beetle and Madagascar roach using implanted thermal microstimulators []
Fig.9  Chemical control of jellyfish-shaped robot consisting only of cardiomyocyte []
1 Reynolds W Jr. The first laparoscopic cholecystectomy. Journal of the Society of Laparoendoscopic Surgeons , 2001, 5(1): 89–94
pmid:11304004
2 Reddick E J, Olsen D O. Laparoscopic laser cholecystectomy. A comparison with mini-lap cholecystectomy. Surgical Endoscopy , 1989, 3(3): 131–133
doi: 10.1007/BF00591357 pmid:2530643
3 Soper N J, Stockmann P T, Dunnegan D L, Ashley S W. Laparoscopic cholecystectomy. The new ‘gold standard’? Archives of Surgery , 1992, 127(8): 917–921 , discussion 921–923
doi: 10.1001/archsurg.1992.01420080051008 pmid:1386505
4 Friedman R L, Fallas M J, Carroll B J, Hiatt J R, Phillips E H. Laparoscopic splenectomy for ITP. Surgical Endoscopy , 1996, 10(10): 991–995
doi: 10.1007/s004649900221 pmid:8864092
5 Smith C D, Weber C J, Amerson J R. Laparoscopic adrenalectomy: New gold standard. World Journal of Surgery , 1999, 23(4): 389–396
doi: 10.1007/PL00012314 pmid:10030863
6 Soper N J, Barteau J A, Clayman R V, Ashley S W, Dunnegan D L. Comparison of early postoperative results for laparoscopic versus standard open cholecystectomy. Surgery, Gynecology & Obstetrics , 1992, 174(2): 114–118
pmid:1531160
7 Xin H, Zelek J S, Carnahan H. Laparoscopic surgery, perceptual limitations and force: A review. In: Proceedings of First Canadian Student Conference on Biomedical Computing, Ontario, Canada , 2006
8 Yamamoto T, Abolhassani N, Jung S, Okamura A M, Judkins T N. Augmented reality and haptic interfaces for robot-assisted surgery. International Journal of Medical Robotics and Computer Assisted Surgery , 2012, 8(1): 45–56
doi: 10.1002/rcs.421 pmid:22069247
9 Okamura A M. Haptic feedback in robot-assisted minimally invasive surgery. Current Opinion in Urology , 2009, 19(1): 102–107
doi: 10.1097/MOU.0b013e32831a478c pmid:19057225
10 Choi S B, Park J S, Kim J K, Hyung W J, Kim K S, Yoon D S, Lee W J, Kim B R. Early experiences of robotic-assisted laparoscopic liver resection. Yonsei Medical Journal , 2008, 49(4): 632–638
doi: 10.3349/ymj.2008.49.4.632 pmid:18729307
11 Sung G T, Gill I S. Robotic laparoscopic surgery: a comparison of the DA Vinci and Zeus systems. Urology , 2001, 58(6): 893–898
doi: 10.1016/S0090-4295(01)01423-6 pmid:11744453
12 Arata J, Mitsuishi M, Warisawa S, Tanaka K, Yoshizawa T, Hashizume M. Development of a dexterous minimally-invasive surgical system with augmented force feedback capability. In: Proceedings of 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada , 2005, 3207–3212
13 Tobergte A, Albu-Schaffer A. Direct force reflecting teleoperation with a flexible joint robot. In: Proceedings of 2012 IEEE International Conference on Robotics and Automation (ICRA), Saint Paul, USA, 2012, 4280–4287
14 Mayer H, Nagy I, Knoll A, Braun E U, Bauernschmitt R, Lange R. Haptic feedback in a telepresence system for endoscopic heart surgery. Presence (Cambridge, Mass.) , 2007, 16(5): 459–470
doi: 10.1162/pres.16.5.459
15 Okamura A. Methods for haptic feedback in teleoperated robot-assisted surgery. Industrial Robot: An International Journal, 2004, 31: 499–508
16 Miller A P, Peine W J, Son J S, Hammoud Z T. Tactile imaging system for localizing lung nodules during video assisted thoracoscopic surgery. In: Proceedings of 2007 IEEE International Conference on Robotics and Automation. Roma, Italy , 2007, 2996–3001
17 Trejos A L, Jayender J, Perri M T, Naish M D, Patel R V, Malthaner R A. Robot-assisted tactile sensing for minimally invasive tumor localization. International Journal of Robotics Research , 2009, 28(9): 1118–1133
doi: 10.1177/0278364909101136
18 Box G N, Lee H J, Santos R J S, Abraham J B A, Louie M K, Gamboa A J R, Alipanah R, Deane L A, McDougall E M, Clayman R V. Rapid communication: robot-assisted NOTES nephrectomy: Initial report. Journal of Endourology , 2008, 22(3): 503–506
doi: 10.1089/end.2007.0385 pmid:18355143
19 Canes D, Lehman A C, Farritor S M, Oleynikov D, Desai M M. The future of NOTES instrumentation: Flexible robotics and in vivo minirobots. Journal of Endourology/Endourological Society , 2009, 23: 787–792
20 Lehman A C, Dumpert J, Wood N A, Redden L, Visty A Q, Farritor S, Varnell B, Oleynikov D. Natural orifice cholecystectomy using a miniature robot. Surgical Endoscopy , 2009, 23(2): 260–266
doi: 10.1007/s00464-008-0195-3 pmid:19057960
21 Lehman A C, Wood N A, Farritor S, Goede M R, Oleynikov D. Dexterous miniature robot for advanced minimally invasive surgery. Surgical Endoscopy , 2011, 25(1): 119–123
doi: 10.1007/s00464-010-1143-6 pmid:20549244
22 Wortman T D, Strabala K W, Lehman A C, Farritor S M, Oleynikov D. Laparoendoscopic single-site surgery using a multi-functional miniature in vivo robot. International Journal of Medical and Computer Assisted Surgery , 2011, 7(1): 17–21
doi: 10.1002/rcs.362 pmid:21341358
23 Wortman T D, Meyer A, Dolghi O, Lehman A C, McCormick R L, Farritor S M, Oleynikov D. Miniature surgical robot for laparoendoscopic single-incision colectomy. Surgical Endoscopy , 2012, 26(3): 727–731
doi: 10.1007/s00464-011-1943-3 pmid:22042583
24 Bar-Cohen Y. Biomimetics—Biologically Inspired Technologies. Boca Raton: CRC Press, 2005
25 Pellegrino S. Deployable Structures. Vienna: Springer, 2001
26 Bar-Cohen Y. Biomimetics—Using nature to inspire human innovation. Bioinspiration & Biomimetics , 2006, 1(1): 1–12
doi: 10.1088/1748-3182/1/1/P01 pmid:17671299
27 Wettels N, Santos V J, Johansson R, Loeb G E. Biomimetic tactile sensor array. Advanced Robotics , 2008, 22(8): 829–849
doi: 10.1163/156855308X314533
28 Fishel J A, Santos V J, Loeb G E. A robust micro-vibration sensor for biomimetic fingertips. In: Proceedings of International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, Arizona, USA , 2008, 659–663
29 López A M, Richardson R, Dehghani A, Roshan R, Jayne D, Neville A. Bio-inspiration for a miniature robot inside the abdomen. Lecture Notes in Computer Science , 2012, 7375: 380–381
doi: 10.1007/978-3-642-31525-1_51
30 Sleigh M A. Mechanisms of flagellar propulsion: A biologist’s view of the relation between structure, motion and fluid mechanics. Protoplasma , 1991, 164(1-3): 45–53
doi: 10.1007/BF01320814
31 Manghi M, Schlagberger X, Netz R R. Propulsion with a rotating elastic nanorod. Physical Review Letters , 2006, 96(6): 068101
doi: 10.1103/PhysRevLett.96.068101 pmid:16606051
32 Sherman R A, Pechter E A. Maggot therapy: a review of the therapeutic applications of fly larvae in human medicine, especially for treating osteomyelitis. Medical and Veterinary Entomology , 1988, 2(3): 225–230
doi: 10.1111/j.1365-2915.1988.tb00188.x pmid:2980178
33 Navarro X, Krueger T B, Lago N, Micera S, Stieglitz T, Dario P. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. Journal of the Peripheral Nervous System , 2005, 10(3): 229–258
doi: 10.1111/j.1085-9489.2005.10303.x pmid:16221284
34 Polasek K H, Hoyen H A, Keith M W, Kirsch R F, Tyler D J. Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity. IEEE Transactions on Neural Systems and Rehabilitation Engineering , 2009, 17: 428–37
35 Brill N, Polasek K, Oby E, Ethier C, Miller L, Tyler D. Nerve cuff stimulation and the effect of fascicular organization for hand grasp in nonhuman primates. In: Proceedings of 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minneapolis, USA , 2009, 1557–1560
36 Ashley S. Palm-size spy planes. Mechanical Engineering , 1998, 120: 74–78
37 Visvanathan K, Gupta N K, Maharbiz M M, Gianchandani Y B. Control of locomotion in ambulatory and airborne insects using implanted thermal microstimulators. In: Proceedings of Solid-State Sensors, Actuators and Microsystems Conference, Denver, USA , 2009, 1987–1990
38 Dario P, Carrozza M C, Guglielmelli E, Laschi C, Menciassi A, Micera S, Vecchi F. Robotics as a future and emerging technology: biomimetics, cybernetics, and neuro-robotics in European projects. IEEE Robotics & Automation Magazine , 2005, 12(2): 29–45
doi: 10.1109/MRA.2005.1458320
39 Sato H, Maharbiz M M. Recent developments in the remote radio control of insect flight. Frontiers in Neuroscience , 2010, 4: 199
doi: 10.3389/fnins.2010.00199 pmid:21629761
40 Shoji K, Akiyama Y, Suzuki M, Hoshino T, Nakamura N, Ohno H, Morishima K. Insect-mountable biofuel cell with self-circulation system. In: Proceedings of 25th IEEE International Conference on Micro Electro Mechanical Systems. Paris, France , 2012, 1249–1252
41 Takemura R, Akiyama Y. Chemical switching of jellyfish-shaped micro robot consisting only of cardiomyocyte gel. In: Proceedings of 16th International Solid-State Sensors, Actuators and Microsystems Conference, Beijing, China , 2011, 2442–2445
42 Neal D, Asada H. Co-fabrication of live skeletal muscles as actuators in a millimeter scale mechanical system. In: Proceedings of 2011 IEEE International Conference on Robotics and Automation. Shanghai, China , 2011, 3251–3256
43 Tian B, Liu J, Dvir T, Jin L, Tsui J H, Qing Q, Suo Z, Langer R, Kohane D S, Lieber C M.Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nature Materials , 2012, Advance Online Publication
44 Fujita H, Shimizu K, Nagamori E. Fabrication of skeletal muscle tissue from C2C12 myoblast cell towards the use as bio-actuator. Animal Cell Technology: Basics & Applied Aspects , 2010, 16: 177–183
45 Akiyama Y, Terada R, Hashimoto M, Hoshino T, Furukawa Y, Morishima K. Rod-shaped tissue engineered skeletal muscle with artificial anchors to utilize as a bio-actuator. Journal of Biomechanical Science and Engineering , 2010, 5(3): 236–244
doi: 10.1299/jbse.5.236
46 Xie L, Wang Q, Liu J. Recent patents on biomedical devices and nanomaterials for hyperthermal therapy of cancer. Recent Patents on Nanomedicine , 2011, 1(1): 19–37
doi: 10.2174/1877913111101010019
47 Chang H.Method and apparatus for laser medical treatment. US Patent , 5298026, 1994
48 Itoh A.Ultrasound therapy system. US Patent , 4757820, 1988
49 Mulier P M, Hoey M F. Method and apparatus for RF ablation andhyperthermia. US Patent , 5807395, 1998
50 Yamamoto R.Microwave hyperthermia treatment apparatus and treatment system. US Patent , 7250589, 2007
51 Nagler Y.Magnetic therapy. US Patent , 6093143, 2000
[1] Alin STOICA, Doina PISLA, Szilaghyi ANDRAS, Bogdan GHERMAN, Bela-Zoltan GYURKA, Nicolae PLITEA. Kinematic, workspace and singularity analysis of a new parallel robot used in minimally invasive surgery[J]. Front Mech Eng, 2013, 8(1): 70-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed