|
|
Kinematical synthesis of an inversion of the double linked fourbar for morphing wing applications |
J. AGUIRREBEITIA( ), R. AVILéS, I. FERNáNDEZ, M. ABASOLO |
Department of Mechanical engineering, ETSI-BILBAO, Vizcaya 48013, Spain |
|
|
Abstract This paper presents the kinematical features of an inversion of the double linked fourbar for morphing wing purposes. The structure of the mechanism is obtained using structural synthesis concepts, from an initial conceptual schematic. Then, kinematic characteristics as instant center of rotation, lock positions, dead point positions and uncertainty positions are derived for this mechanism in order to face the last step, the dimensional synthesis; in this sense, two kinds of dimensional synthesis are arranged to guide the wing along two positions, and to fulfill with the second one some aerodynamic and minimum actuation energy related issues.
|
Keywords
morphing wing
structural synthesis
dimensional synthesis
geometrical kinematics
|
Corresponding Author(s):
AGUIRREBEITIA J.,Email:josu.aguirrebeitia@ehu.es
|
Issue Date: 05 March 2013
|
|
1 |
Rodriguez A. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007
|
2 |
Sofla A Y N, Meguid S A, Tan K T, Yeo W K. Shape morphing of aircraft wing: Status and challenges. Materials & Design , 2010, 31(3): 1284-1292 doi: 10.1016/j.matdes.2009.09.011
|
3 |
Berton B.Shape Memory Alloys Application: Trailing Edge Shape Control. NATO OTAN RTO-MP-AVT-141 , 2006
|
4 |
Yu Y, Li X, Zhang W, Leng J. Investigation on adaptive wing structure based on shape memory polymer composite hinge. International conference on smart materials and nanotechnology in engineering, China. In: Proceedings of the Society for Photo-Instrumentation Engineers , 2007, 6423: 64231D-5, 64231D-7 doi: 10.1117/12.779394
|
5 |
Wang D P, Bartley-Cho J D, Martin C A, Hallam B. Development of high-rate, large deflection, hingeless trailing edge control surface for the smart wing wind tunnel model. Smart structures and materials 2001: Industrial and commercial applications of smart structures technologies. In: Proceedings of SPIE , 2001
|
6 |
Vos R, Barrett R, de Breuker R, Tiso P. Post-buckled precompressed elements: A new class of control actuators for morphing wing UAVs. Smart Materials and Structures , 2007, 16(3): 919-926 doi: 10.1088/0964-1726/16/3/042
|
7 |
Lim S M, Lee S, Park H C, Yoon K J, Goo N S. Design and demonstration of a biomimetic wing section using a lightweight piezo-composite actuator (LIPCA). Smart Materials and Structures , 2005, 14(4): 496-503 doi: 10.1088/0964-1726/14/4/006
|
8 |
Paradies R, Ciresa P. Active wing design with integrated flight control using piezoelectric macro fiber composites. Smart Materials and Structures , 2009, 18(3): 035010 doi: 10.1088/0964-1726/18/3/035010
|
9 |
Mattioni F, Weaver P M, Potter K D, Friswell M I. The application of thermally induced multistable composites to morphing aircraft structures. Industrial and commercial applications of smart structures technologies. Proceedings of the Society for Photo-Instrumentation Engineers , 2008, 6930: 693012-1, 693012-11 doi: 10.1117/12.776226
|
10 |
Diaconu C G, Weaver P M, Mattioni F. Concepts for morphing airfoil sections using bi-stable laminated composite structures. Thin-walled Structures , 2008, 46(6): 689-701 doi: 10.1016/j.tws.2007.11.002
|
11 |
Ding H, Zhao J, Huang Z. Unified structural synthesis of planar simple and multiple joint kinematic chains. Mechanism and Machine Theory , 2010, 45(4): 555-568 doi: 10.1016/j.mechmachtheory.2009.10.012
|
12 |
Sunkari R P, Schmidt L C. Structural synthesis of planar kinematic chains by adapting a Mckay-type algorithm. Mechanism and Machine Theory , 2006, 41(9): 1021-1030 doi: 10.1016/j.mechmachtheory.2005.11.007
|
13 |
Butcher E A, Hartman C. Efficient enumeration and hierarchical classification of planar simple-jointed kinematic chains: application to 12- and 14-bar single degree-of-freedom chains. Mechanism and Machine Theory , 2005, 40(9): 1030-1050 doi: 10.1016/j.mechmachtheory.2004.12.015
|
14 |
Yang T L. Topological characteristics and automatic generation of structural analysis and synthesis of plane mechanisms, Part I: Theory. American Society of Mechanical Engineers, Design Engineering Division , 1988
|
15 |
Manolescu N I. A method based on Baranov trusses and using graph theory to find the set of planar jointed kinematic chains and mechanisms. Mechanism and Machine Theory , 1973, 8(1): 3-22 doi: 10.1016/0094-114X(73)90003-7
|
16 |
Hsieh W H. Kinematic synthesis of cam-controlled planetary gear trains. Mechanism and Machine Theory , 2009, 44(5): 873-895 doi: 10.1016/j.mechmachtheory.2008.07.001
|
17 |
Kim J U, Kwak B M. Application of edge permutation group to structural synthesis of epicyclic gear trains. Mechanism and Machine Theory , 1990, 25(5): 563-574 doi: 10.1016/0094-114X(90)90070-Z
|
18 |
Fernandez de Bustos I, Agirrebeitia J, Avilés R, Ajuria G. Aguirrebeitia, J., Avilés, R., Ajuria, G. Second order analysis of the mobility of kinematic loops via acceleration compatibility analysis. Mechanism and Machine Theory , 2009, 44(10): 1923-1937 doi: 10.1016/j.mechmachtheory.2009.04.007
|
19 |
Dijscksman E A. Motion Geometry of Mechanisms. Cambridge: Cambridge University Press, 1976
|
20 |
Hernandez A. Cinematica de Mecanismos. Analisis y dise?o. Editorial Síntesis . 2004
|
21 |
Hunt K H. Kinematic Geometry of Mechanisms. Oxford: Clarendon Press, 1978
|
22 |
Shigley J E, Uicker J J. Theory of Machines and Mechanisms, USA: McGraw Hill, 1980
|
23 |
Avilés R, Ajuria M B, García de Jalón J. A fairly general method for the optimum synthesis of mechanisms. Mechanism and Machine Theory , 1985, 20(4): 321-328 doi: 10.1016/0094-114X(85)90037-0
|
24 |
Vallejo J, Avilés R, Hernández A, Amezua E. Nonlinear optimization of planar linkages for kinematic syntheses. Mechanism and Machine Theory , 1995, 30(4): 501-518 doi: 10.1016/0094-114X(94)00064-R
|
25 |
Avilés R, Vallejo J, Ajuria G, Agirrebeitia J. Second-order methods for the optimum synthesis of multibody systems. Structural and Multidisciplinary Optimization , 2000, 19(3): 192-203 doi: 10.1007/s001580050102
|
26 |
Avilés R, Vallejo J, Fernandez de Bustos I, Agirrebeitia J, Ajuria G. Optimum synthesis of planar linkages using a strain-energy error function under geometric constraints. Mechanism and Machine Theory , 2010, 45(1): 65-79 doi: 10.1016/j.mechmachtheory.2009.08.002
|
27 |
Holland J H. Adaptation in Natural and Artificial Systems. Cambridge: The MIT Press, 1994
|
28 |
Avilés R. Introducción a los algoritmos genéticos con aplicaciones en ingeniería mecánica. Escuela Técnica Superior de Ingenieros de Bilbao , Spain, 1996
|
29 |
Fernández de Bustos I, Agirrebeitia J, Avilés R, Angulo C. Kinematical synthesis of 1-DOF mechanisms using finite elements and genetic algorithms. Finite Elements in Analysis and Design , 2005, 41(15): 1441-1463 doi: 10.1016/j.finel.2005.04.001
|
30 |
Lasdon L S, Waren A D, Jain A, Ratner M. Design and testing of a generalized reduced gradient code for nonlinear programming. ACM Transactions on Mathematical Software , 1978, 4(1): 34-50 doi: 10.1145/355769.355773
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|