Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2015, Vol. 10 Issue (3) : 287-293    https://doi.org/10.1007/s11465-015-0346-x
RESEARCH ARTICLE
Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite short natural fibers reinforced injection molded
Jonnathan D. SANTOS1,Jorge I. FAJARDO1,*(),Alvaro R. CUJI1,Jaime A. GARCÍA2,Luis E. GARZÓN1,Luis M. LÓPEZ1
1. Department of Mechanical Engineering, Universidad Politécnica Salesiana, Elia Liut, Ecuador
2. Department of Mechanical Engineering, Universidad Pontificia Bolivariana, Medellín, Columbia
 Download: PDF(558 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

Keywords biocomposite      natural fiber      shrinkage      simulation      warpage     
Corresponding Author(s): Jorge I. FAJARDO   
Online First Date: 01 September 2015    Issue Date: 23 September 2015
 Cite this article:   
Jonnathan D. SANTOS,Jorge I. FAJARDO,Alvaro R. CUJI, et al. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite short natural fibers reinforced injection molded[J]. Front. Mech. Eng., 2015, 10(3): 287-293.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-015-0346-x
https://academic.hep.com.cn/fme/EN/Y2015/V10/I3/287
Property Value
Melt index flow 20 g/(10 min)
Density 0.954 g/cm3
Melting temperature 130 °C
Softening point 127 °C
Heat deflection temperature 76.1 °C
Tab.1  Physical and processing conditions of HDPE-8920
Property Value
Aspect ratio 25
Young modulus 990 MPa
Poisson’s ratio 0.35
Density 1.22 g/cm3
Tab.2  GAK fiber properties
Keyword Description
HDPE High density polyethylene
HDPE-0-GAK HDPE reinforced with 0 wt.% GAK fiber
HDPE-20-GAK HDPE reinforced with 20 wt.% GAK fiber
HDPE-30-GAK HDPE reinforced with 30 wt.% GAK fiber
HDPE-40-GAK HDPE reinforced with 40 wt.% GAK fiber
E Root mean sum square error
Tab.3  Nomenclature employed in the experimental and computational methods
Fig.1  Configuration of injection mold
Fig.2  Flowchart of operational process
Method Material Fill time/s Injection pressure/MPa Hold pressure/MPa Ejection time/s Average temperature/°C Cooling time/s Cycle time/s Mold temperature/°C Melting temperature/°C
Solid Works Plastics® HDPE 1.65 30.42 13.13 27.70 -- 12.15 27.94 40 165
20-GAK 1.64 30.28 13.04 27.70 -- 13.14 29.34 40 165
30-GAK 1.65 31.11 13.21 27.33 -- 12.75 29.08 40 165
40-GAK 1.63 30.27 -- 28.77 -- 13.62 30.40 40 165
Moldflow Adviser® HDPE 1.14 21.64 -- 39.15 167.6 7.08 40.29 40 165
Experimentalparameter HDPE, HDPE-GAK 1.62 28.90 -- 30 -- 12 33 -- 165
Tab.4  Parameters of injection molding on experimental and computational methods
Method Volumetric shrinkage/% Error
Experimental 9.68±0.4 ---
Moldflow® 10.78 1.09
Solid Works® 9.23 0.53
Tab.5  Maximum volumetric shrinkage on experimental and simulations results
Fig.3  Volumetric shrinkage by zones (A 10 mm, B 40 mm and C 70 mm)
Method Zone A Zone B Zone C
Volumetric shrinkage/% E Volumetric shrinkage/% E Volumetric shrinkage/% E
Experimental 8.40±0.4 8.55±0.4 9.62±0.4
Moldflow® 9.31 0.94 9.34 0.85 10.71 0.37
Solid Works® 7.12 1.31 9.09 0.64 9.23 0.43
Tab.6  Volumetric shrinkage Zones A, B and C (HDPE-0-GAK)
Fig.4  Volumetric shrinkage of HDPE-0-GAK
Fig.5  Volumetric shrinkage of composite
Fig.6  Simulation of warpage on composite at HDPE-0-GAK. (a) Moldflow® software (isometric view), scale factor 6; (b) Solid Works® (orthogonal view) scale factor 44
Method HDPE-0-GAK HDPE-20-GAK HDPE-30-GAK HDPE-40-GAK
Maximum warpage/mm E Maximum warpage/mm E Maximum warpage/mm E Maximum warpage/mm E
Experimental 0.085±0.01 -- 0.018±0.01 -- 0.010±0.01 -- 0.120±0.01 --
Moldflow® 0.060 0.025 -- -- -- -- -- --
Solid Works® 0.017 0.068 0.023 0.010 0.020 0.027 0.018 0.100
Tab.7  Maximum warpage
1 Mohanty A K, Misra M, Drzal L T. Natural Fibers, Biopolymers, and Biocomposites. Boca Raton: CRC Press, 2005
2 Holbery J, Houston D. Natural-fiber-reinforced polymer composites in automotive applications. JOM, 2006, 58(11): 80–86
https://doi.org/10.1007/s11837-006-0234-2
3 Treviso A, van Genechten B, Mundo D, Damping in composite materials: Properties and models. Composites. Part B, Engineering, 2015, 78: 144–152
https://doi.org/10.1016/j.compositesb.2015.03.081
4 Guo Z, Ruan X, Peng Y, Warpage of injection-molded thermoplastics parts: Numerical simulation and experimental validation. Journal of Materials Engineering and Performance, 2002, 11(2): 138–144
https://doi.org/10.1361/105994902770344196
5 Khalfallah M, Abbès B, Abbès F, Innovative flax tapes reinforced Acrodur biocomposites: A new alternative for automotive applications. Materials & Design, 2014, 64: 116–126
https://doi.org/10.1016/j.matdes.2014.07.029
6 Matin I, Hadzistevic M, Hodolic J, CAD/CAE-integrated injection mold design system for plastic products. International Journal of Advanced Manufacturing Technology, 2012, 63(5–8): 595–607
https://doi.org/10.1007/s00170-012-3926-5
7 Rahman W A W A, Sin L T, Rahmat A R. Injection moulding simulation analysis of natural fiber composite window frame. Journal of Materials Processing Technology, 2008, 197(1): 22–30
8 Chen C, Chen T, Chen S, Optimization of the injection molding process for short-fiber-reinforced composites. Mechanics of Composite Materials, 2011, 47(3): 359–368
https://doi.org/10.1007/s11029-011-9214-x
9 Wang H, Wang Y, Wang Y. Cost estimation of plastic injection molding parts through integration of PSO and BP neural network. Expert Systems with Applications, 2013, 40(2): 418–428
https://doi.org/10.1016/j.eswa.2012.01.166
10 Hakimian E, Sulong A B. Analysis of warpage and shrinkage properties of injection-molded micro gears polymer composites using numerical simulations assisted by the Taguchi method. Materials & Design, 2012, 42: 62–71
https://doi.org/10.1016/j.matdes.2012.04.058
11 Annicchiarico D, Alcock J R. Review of factors that affect shrinkage of molded part in injection molding. Materials and Manufacturing Processes, 2014, 29(6): 662–682
https://doi.org/10.1080/10426914.2014.880467
12 Nian S, Wu C, Huang M. Warpage control of thin-walled injection molding using local mold temperatures. International Communications in Heat and Mass Transfer, 2015, 61: 102–110
https://doi.org/10.1016/j.icheatmasstransfer.2014.12.008
13 Gao Y, Wang X. Surrogate-based process optimization for reducing warpage in injection molding. Journal of Materials Processing Technology, 2009, 209(3): 1302–1309
https://doi.org/10.1016/j.jmatprotec.2008.03.048
14 Barghash M A, Alkaabneh F A. Shrinkage and warpage detailed analysis and optimization for the injection molding process using multistage experimental design. Quality Engineering, 2014, 26(3): 319–334
https://doi.org/10.1080/08982112.2013.852679
15 Liu H, Wu Q, Han G, Compatibilizing and toughening bamboo flour-filled HDPE composites: Mechanical properties and morphologies. Composites. Part A, Applied Science and Manufacturing, 2008, 39(12): 1891–1900
https://doi.org/10.1016/j.compositesa.2008.09.011
16 Vincent M, Giroud T, Clarke A, Description and modeling of fiber orientation in injection molding of fiber reinforced thermoplastics. Polymer, 2005, 46(17): 6719–6725
https://doi.org/10.1016/j.polymer.2005.05.026
17 Azaman M, Sapuan S, Sulaiman S, Numerical simulation analysis of the in-cavity residual stress distribution of lignocellulosic (wood) polymer composites used in shallow thin-walled parts formed by the injection moulding process. Materials & Design, 2014, 55: 381–386
https://doi.org/10.1016/j.matdes.2013.09.041
18 Shokri P, Bhatnagar N. Effect of the post-filling stage on fiber orientation at the mid-plane in injection molding of reinforced thermoplastics. Physics Procedia, 2012, 25: 79–85
https://doi.org/10.1016/j.phpro.2012.03.053
19 Tan H S, Yu Y Z, Xing L X, Density and shrinkage of injection molded impact polypropylene copolymer/coir fiber composites. Polymer-Plastics Technology and Engineering, 2013, 52(3): 257–260
https://doi.org/10.1080/03602559.2012.745553
20 Kitayama S, Onuki R, Yamazaki K. Warpage reduction with variable pressure profile in plastic injection molding via sequential approximate optimization. International Journal of Advanced Manufacturing Technology, 2014, 72(5–8): 827–838
https://doi.org/10.1007/s00170-014-5697-7
21 Mohd Hilmi O, Hasan S, Muhammad W N A W, Optimising injection moulding parameter setting in processing polypropylene-clay composites through Taguchi method. Applied Mechanics and Materials, 2012, 271–272: 272–276
22 Azaman M, Sapuan S, Sulaiman S, An investigation of the processability of natural fibre reinforced polymer composites on shallow and flat thin-walled parts by injection moulding process. Materials & Design, 2013, 50: 451–456
https://doi.org/10.1016/j.matdes.2013.03.036
23 Mlekusch B. The warpage of corners in the injection moulding of short-fibre-reinforced thermoplastics. Composites Science and Technology, 1999, 59(12): 1923–1931
[1] Xiaojun GU, Xiuzhong SU, Jun WANG, Yingjie XU, Jihong ZHU, Weihong ZHANG. Improvement of impact resistance of plain-woven composite by embedding superelastic shape memory alloy wires[J]. Front. Mech. Eng., 2020, 15(4): 547-557.
[2] Sheng WANG, Jun WANG, Yingjie XU, Weihong ZHANG, Jihong ZHU. Compressive behavior and energy absorption of polymeric lattice structures made by additive manufacturing[J]. Front. Mech. Eng., 2020, 15(2): 319-327.
[3] Wei LIU, Hongzhong QI, Xintian LIU, Yansong WANG. Evaluation of regenerative braking based on single-pedal control for electric vehicles[J]. Front. Mech. Eng., 2020, 15(1): 166-179.
[4] Elijah Kwabena ANTWI, Kui LIU, Hao WANG. A review on ductile mode cutting of brittle materials[J]. Front. Mech. Eng., 2018, 13(2): 251-263.
[5] Yun ZHANG, Wenjie YU, Junjie LIANG, Jianlin LANG, Dequn LI. Three-dimensional numerical simulation for plastic injection-compression molding[J]. Front. Mech. Eng., 2018, 13(1): 74-84.
[6] Xiaoguang GUO,Qiang LI,Tao LIU,Renke KANG,Zhuji JIN,Dongming GUO. Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials[J]. Front. Mech. Eng., 2017, 12(1): 89-98.
[7] Shaohui YIN,Hongpeng JIA,Guanhua ZHANG,Fengjun CHEN,Kejun ZHU. Review of small aspheric glass lens molding technologies[J]. Front. Mech. Eng., 2017, 12(1): 66-76.
[8] Yang LI,Yunxin WU,Hai GONG,Xiaolei FENG. Air bearing center cross gap of neutron stress spectrometer sample table support system[J]. Front. Mech. Eng., 2016, 11(4): 403-411.
[9] Huaxin LIU,Marco CECCARELLI,Qiang HUANG. Design and simulation of a cable-pulley-based transmission for artificial ankle joints[J]. Front. Mech. Eng., 2016, 11(2): 170-183.
[10] Mingfeng WANG,Marco CECCARELLI,Giuseppe CARBONE. A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation[J]. Front. Mech. Eng., 2016, 11(2): 144-158.
[11] Pankaj SHARMA,Ajai JAIN. Analysis of dispatching rules in a stochastic dynamic job shop manufacturing system with sequence-dependent setup times[J]. Front. Mech. Eng., 2014, 9(4): 380-389.
[12] Jie OUYANG, Bin LI, Shihua GONG. Dymola-based multi-parameters integrated optimization for high speed transfer system of LED chip sorter[J]. Front Mech Eng, 2013, 8(2): 118-126.
[13] Alin STOICA, Doina PISLA, Szilaghyi ANDRAS, Bogdan GHERMAN, Bela-Zoltan GYURKA, Nicolae PLITEA. Kinematic, workspace and singularity analysis of a new parallel robot used in minimally invasive surgery[J]. Front Mech Eng, 2013, 8(1): 70-79.
[14] Yulun CHI, Haolin LI. Simulation and analysis of grinding wheel based on Gaussian mixture model[J]. Front Mech Eng, 2012, 7(4): 427-432.
[15] Conghui LIANG, Marco CECCARELLI, Yukio TAKEDA. Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot[J]. Front Mech Eng, 2012, 7(4): 357-370.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed