Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2016, Vol. 11 Issue (1) : 101-107    https://doi.org/10.1007/s11465-016-0369-y
REVIEW ARTICLE
Technological lubricating means: Evolution of materials and ideas
Vladimir A. GODLEVSKIY()
Department of Physics, Ivanovo State University, Ivanovo 153025, Russia
 Download: PDF(411 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The main stages of technological lubricating material development from ancient times to date are described. How the chemical composition of these products changed with time, how new ideas revealing the physical and chemical basics of external media that influence the mechanical processing of materials appeared, how these ideas explained the differences between traditional tribology and specific technology of metal processing are discussed. The question of the possible realization of Rehbinder’s adsorption effect in contact zone is also stated. The description of a very captivating problem is related to the explanation of the mechanism of lubricant penetration into the contact zone between the material being processed and the tool. The birth and development of the hypothesis of microcapillary penetration of the lubricant into the dynamically changed intersurface clearance that has finally led to formulating the “necessary kinetic condition of the lubricating activity” is relayed.

Keywords technological lubrication and cooling      metal cutting      grinding      lubrication action      tribology     
Corresponding Author(s): Vladimir A. GODLEVSKIY   
Online First Date: 20 January 2016    Issue Date: 02 March 2016
 Cite this article:   
Vladimir A. GODLEVSKIY. Technological lubricating means: Evolution of materials and ideas[J]. Front. Mech. Eng., 2016, 11(1): 101-107.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-016-0369-y
https://academic.hep.com.cn/fme/EN/Y2016/V11/I1/101
Fig.1  Stone axe hammer
Fig.2  Bow drill for drilling of stone hammer’s hole with help of quartz suspension
Fig.3  Process of glass polishing with abrasive pastes
Fig.4  Diagram of the tribochemical reaction

v–Speed of reaction; t–Time; АВ–Reaction to a raw firm surface; ВС–Growth phase in the beginning of friction; CD–A stationary phase of the reaction; DE–Recession of the reaction after termination of friction (surface passivation); F–Moment of the division of surfaces at cutting; FG–Phase of complicated TLM access; G–Moment of full separation of chip from the tool; GH–Passivation phase of chip surface

Fig.5  Models of contact between tool rake face and chip. (a) Two-band; (b) three-band
Fig.6  Various representations about the different possible ways of media penetration to the contact zone at cutting. (a) Through the network of interfacial capillaries; (b) through the backlashes formed periodically between the tool and the workpiece; (c) through the cavities formed by periodic failures of build-up edge; (d) caused by abnormal intensive diffusion through working material primary shear zone
Fig.7  Possible directions of TLM access in tool-workpiece interface zone

A–Along the rake face; B–Along the clearance face; C–In the cross-section direction; D–Through primary shear zone

Fig.8  Interfacial single capillary as model of TLM penetration in contact zone at edge cutting
1 Virginskiy  V S, Hoteenkov  D S. Sketches of History of a Science and Technics since the Most Ancient Times to the Middle of XV Century. Moscow: Prosveschenije, 1993, 288 (in Russian)
2 Buyanovskiy  I A, Fuks  I G, Bobrov  S N. Amusing Tribology. Moskow: Neft’ I Gaz, 1999
3 Gorjunov  Y V, Pertsov  N V, Summ  B D. Rehbinder’s Effect. Moscow, 1966 (in Russian)
4 Rehbinder  P A, Schukin  E D. Surface phenomena in solids in processes of their deformation and destruction. Uspehi fizicheskih nauk, 1972, 108(1): 3–43 (in Russian) 
https://doi.org/10.3367/UFNr.0108.197209a.0003
5 Bowden  F P, Tabor  D. The Friction and Lubrication of Solids Vol. 1, 2. Oxford: Clarendon Press, 1950–1964
6 Ivkovich  B. Tribology of Cutting. Cutting Fluids. Minsk: Naika I Technika, 1982 (in Russian)
7 Latyshev  V N. Increasing of Cutting Fluids Effectiveness. Moscow: Mashinostrojenije, 1985 (in Russian)
8 Bailey  J A. Friction in metal machining-mechanical aspects. Wear, 1975, 31(2): 243–275
https://doi.org/10.1016/0043-1648(75)90161-1
9 Williams  J A. The action of lubricants in metal cutting. Journal of Mechanical Engineering Science, 1977, 19(5): 202–212
10 Williams  J A, Tabor  D. The role of lubricants in machining. Wear, 1977, 43(77): 275–292
https://doi.org/10.1016/0043-1648(77)90125-9
11 Heinicke  G, Henning  H P, Linke   E, . Tribochemistry. Hoboken: John Wiley & Sons, 1984
12 Akhmatov  A S. Molecular Physics of Boundary Friction. Jerusalem: IPST, 1966
13 Talantov  N V, Tsheremushnikov  N P, Dudkin  M E. The investigation of penetrating ability of cutting fluids. In: Treatment of Construction Materials by Cutting with Application of Cutting Fluids. Moscow: MDNTP, 1978, 108–111 (in Russian)
14 Gordon  M B. About the physical nature of a friction and the mechanism of environments lubrication action at metals cutting. In: Scientific and Technical Bases of Application of Cutting Fluids at Metals Cutting. Ivanovo. 1968, 21–45 (in Russian)
15 Rowe  G W. Lubrication in metal cutting and grinding. Philosophical Magazine A, 1981, 43(3): 567–585
https://doi.org/10.1080/01418618108240395
16 Klamann  D. Lubricants and Related Products: Synthesis, Properties, Applications, International Standards. Weinheim: Verlag Chemie, 1984
17 Zorev  N N. Results of work in the field of the mechanics of the metal cutting process. In: Proceedings of Conference on Technology of Engineering Manufacture. 1958, 255–268
18 Wallace  P W, Boothroyd  G. Tool forces and tool-ship friction in orthogonal machining. Journal of Mechanical Engineering Science, 1964, 6(1): 74–87
https://doi.org/10.1243/JMES_JOUR_1964_006_013_02
19 Zorev   N N. Development of Metal Cutting Science. Moscow: Mashinostrijenije, 1967 (in Russian)
20 Gordon  M B. Research of friction and lubrication at cutting of metals. In: The Friction and Lubrication at Metals Cutting. Cheboksary: Chuvash State University, 1972, 7–138 (in Russian)
21 DeChiffre  L. Lubrication in cutting: Critical review and experiments with restricted contact tool. ASLE Transactions, 1981, 24(3): 340–344
https://doi.org/10.1080/05698198108983030
22 Horne  J G, Doyle  E D, Tabor  D. Direct observation of contact and lubrication of the chip-tool interface. In: Proceedings of 1st International Conference of Lubrication Challendes in Metal Working and Processing. Chicago, 1978, 9–15
23 Podgorkov  V V, Markov  V V, Gladkov  V M. The method of cutting fluids delivery. USSR Patent 1549721, 1988-03-05 (in Russian)
24 Moore  D F. Principles and Application of Tribology. New York: Pergamon Press, 1972
25 Talantov  N V. Physical Fundamentals of Metal Cutting. Volgograd: Volgograd Polytechnical Institute, 1984, 3–37 (in Russian)
26 Godlevskiy  V A, Volkov  A V, Latyshev  V N, et al.  The kinetics of lubricant penetration action during machining. Lubrication Science, 1997, 9(2): 127–140
https://doi.org/10.1002/ls.3010090203
27 Merchant  M E.  Cutting fluid action and the wear of cutting tools. In: Proceedings of Conference on Institute of Mechanical Engineering, Lubrication and Wear. London, 1957, 127–136
28 Godlevskiy V A,  Volkov  A V. The Mathematical Models of Lubrication Processes in Technical Tribo-systems. Ivanovo: Ivanovo State University Press, 2010 (in Russian)
29 Astakhov  V P. Metal cutting theory foundations of near-dry (MQL) machining. International Journal of Machining and Machinability of Materials, 2010, 7(1–2): 1–16
https://doi.org/10.1504/IJMMM.2010.029843
30 Astakhov  V P, Joksch  S, Godlevskiy  V A, . Metal Working Fluids for Cutting and Grinding: Fundamentals and Recent Advances. Cambridge: Woodhead Publishing Limited, 2012
[1] Julong YUAN, Binghai LYU, Wei HANG, Qianfa DENG. Review on the progress of ultra-precision machining technologies[J]. Front. Mech. Eng., 2017, 12(2): 158-180.
[2] Shaodan ZHI,Jianyong LI,A. M. ZAREMBSKI. Modelling of dynamic contact length in rail grinding process[J]. Front. Mech. Eng., 2014, 9(3): 242-248.
[3] Ravindra Nath YADAV, Vinod YADAVA, G.K. SINGH. Multi-objective optimization of process parameters in Electro-Discharge Diamond Face Grinding based on ANN-NSGA-II hybrid technique[J]. Front Mech Eng, 2013, 8(3): 319-332.
[4] Yulun CHI, Haolin LI. Simulation and analysis of grinding wheel based on Gaussian mixture model[J]. Front Mech Eng, 2012, 7(4): 427-432.
[5] Yanming QUAN, Wenwang ZHONG. Investigation on drilling-grinding of CFRP[J]. Front Mech Eng Chin, 2009, 4(1): 60-63.
[6] HUO Fengwei, JIN Zhuji, KANG Renke, GUO Dongming, YANG Chun. Recognition of diamond grains on surface of fine diamond grinding wheel[J]. Front. Mech. Eng., 2008, 3(3): 325-331.
[7] ZHAO Qingliang, Brinksmeier Ekkard, Riemer Oltmann, Rickens Kai. Ultra-precision ductile grinding of BK7 using super abrasive diamond wheel[J]. Front. Mech. Eng., 2007, 2(3): 350-355.
[8] GUO Dongming, LIU Minjing, ZHANG Chunbo, SHENG Xianjun, SUN Yuwen. Determination of the scheme of precision grinding compensation on the radome[J]. Front. Mech. Eng., 2007, 2(3): 263-266.
[9] GUO Xiaoguang, GUO Dongming, KANG Renke, JIN Zhuji. Theoretical and experimental analysis on super precision grinding of monocrystal silicon[J]. Front. Mech. Eng., 2007, 2(2): 137-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed