Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (1) : 77-88    https://doi.org/10.1007/s11465-017-0411-8
REVIEW ARTICLE
Research progress on ultra-precision machining technologies for soft-brittle crystal materials
Hang GAO(),Xu WANG,Dongming GUO,Yuchuan CHEN
Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China
 Download: PDF(615 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Soft-brittle crystal materials are widely used in many fields, especially optics and microelectronics. However, these materials are difficult to machine through traditional machining methods because of their brittle, soft, and anisotropic nature. In this article, the characteristics and machining difficulties of soft-brittle and crystals are presented. Moreover, the latest research progress of novel machining technologies and their applications for soft-brittle crystals are introduced by using some representative materials (e.g., potassium dihydrogen phosphate (KDP), cadmium zinc telluride (CZT)) as examples. This article reviews the research progress of soft-brittle crystals processing.

Keywords brittle      soft      functional crystal      ultra-precision machining     
Corresponding Author(s): Hang GAO   
Just Accepted Date: 16 November 2016   Online First Date: 23 December 2016    Issue Date: 21 March 2017
 Cite this article:   
Hang GAO,Xu WANG,Dongming GUO, et al. Research progress on ultra-precision machining technologies for soft-brittle crystal materials[J]. Front. Mech. Eng., 2017, 12(1): 77-88.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0411-8
https://academic.hep.com.cn/fme/EN/Y2017/V12/I1/77
Crystal name Mohs hardness
KDP crystal 2.5
CZT crystal 2.3
MCT crystal 3.0
BaF2 crystal 3.5
ADP crystal 2.0
CaF2 crystal 4.0
NaCl crystal 2.5
LiF crystal 3.0
BBO crystal 4.0
ZnS crystal 3.5-4.0
Tab.1  Mohs hardness of several kinds of soft-brittle crystals
Fig.1  Mechanism of diamond wire sawing assisted with water dissolution [15]
Fig.2  Schematic diagram of the experimental setup for laser separation of KDP crystals [17]
Fig.3  Schematic diagram of the SPDT setup
Fig.4  Ultra-precision SPDT equipment [23]
Fig.5  Schematic diagram of the micro waviness on the surface after SPDT process [31]
Fig.6  Schematic diagram of precision grinding of CZT wafers [38]
Fig.7  SEM surface topography of CZT wafers after precision grinding by diamond grinding wheels with different diameter abrasives: (a) #800, (b) #1500, (c) #3000, and (d) #5000 [38]
Fig.8  MRF machine (Q22, QED Company)
Fig.9  Stress in the KDPs after (a) SPDT and (b) MRF [44]
Fig.10  Experimental process of KDP 100 mm×100 mm polished using IBF method [47]
Fig.11  Raman spectra of KDP crystal surfaces with and without deliquescence [52]
Fig.12  Schematic diagram of material removal of KDP crystal during water dissolution polishing [56]
Fig.13  Atomic force microscopy measurements of the KDP surface (a) before and (b) after polishing. The dashed lines in (a) indicate the locations of the maximum microwaviness [58]
1 Yukhnevich T V, Voloshinov V B. Photoelastic and acousto-optic properties of KDP crystal applied in wide angle tunable filters. Physics Procedia, 2015, 70: 745–748
https://doi.org/10.1016/j.phpro.2015.08.121
2 Dekemper E, Vanhamel J, Van Opstal B, Influence of driving power on the performance of UV KDP-based acousto-optical tunable filters. Journal of Optics, 2015, 17(7): 75404–75412
https://doi.org/10.1088/2040-8978/17/7/075404
3 Moses E I. Advances in inertial confinement fusion at the National Ignition Facility (NIF). Fusion Engineering and Design, 2010, 85(7–9): 983–986
https://doi.org/10.1016/j.fusengdes.2009.11.006
4 Martyniuk M, Sewell R H, Musca C A, Nanoindentation of HgCdTe prepared by molecular beam epitaxy. Applied Physics Letters, 2005, 87(25): 251905
https://doi.org/10.1063/1.2143411
5 Bolotnikov A E, Camarda G S, Chen E, CdZnTe position-sensitive drift detectors with thicknesses up to 5 cm. Applied Physics Letters, 2016, 108(9): 093504
https://doi.org/10.1063/1.4943161
6 Beikahmadi M, Mirabbasi S, Iniewski K K. Design and analysis of a low-power readout circuit for CdZnTe detectors in 0.13-CMOS. IEEE Sensors Journal, 2016, 16(4): 903–911
https://doi.org/10.1109/JSEN.2015.2495228
7 MacKenzie J, Kumar F J, Chen H. Advancements in THM-grown CdZnTe for use as substrates for HgCdTe. Journal of Electronic Materials, 2013, 42(11): 3129–3132
https://doi.org/10.1007/s11664-013-2681-1
8 Tanaka H, Kawaguchi N, Abe N, Crystal growth and scintillation properties of Nd: CaF2. Optical Materials, 2011, 33(3): 284–287
https://doi.org/10.1016/j.optmat.2010.08.031
9 Snetkov I L, Yakovlev A I, Palashov O V. CaF2, BaF2 and SrF2 crystals’ optical anisotropy parameters. Laser Physics Letters, 2015, 12(9): 095001
https://doi.org/10.1088/1612-2011/12/9/095001
10 Sun F, Zhang P, Lu L, The effect of air flow on the temperature distribution and the harmonic conversion efficiency of the ADP crystal with large aperture in the temperature control scheme. Optics & Laser Technology, 2016, 77: 126–133
https://doi.org/10.1016/j.optlastec.2015.09.019
11 Campbell J H, Hawley-Fedder R A, Stolz C J, NIF optical materials and fabrication technologies: An overview. Proceedings of the Society for Photo-Instrumentation Engineers, 2004, 5341: 84–101
https://doi.org/10.1117/12.538471
12 Koziejowska A, Sangwal K. Surface micromorphology and dissolution kinetics of potassium dihydrogen phosphate (KDP) crystals in undersaturated aqueous solutions. Journal of Materials Science, 1988, 23(8): 2989–2994
https://doi.org/10.1007/BF00547480
13 Xu D, Xue D, Ratajczak H. Morphology and structure studies of KDP and ADP crystallites in the water and ethanol solutions. Journal of Molecular Structure, 2005, 740(1–3): 37–45
https://doi.org/10.1016/j.molstruc.2005.01.016
14 Gao H, Wang X, Teng X, Micro water dissolution machining principle and its application in ultra-precision processing of KDP optical crystal. Science China. Technological Sciences, 2015, 58(11): 1877–1883
https://doi.org/10.1007/s11431-015-5866-4
15 Teng X, Gao H, Wang X, Experimental study on precision sawing of KDP crystal with diamond wire saw assisted with water dissolution. Journal of Synthetic Crystals, 2015, 44(06): 1438–1442 (in Chinese)
16 Deng L, Duan J, Zeng X, A study on dual laser beam separation technology of KDP crystal. International Journal of Machine Tools & Manufacture, 2013, 72: 1–10
https://doi.org/10.1016/j.ijmachtools.2013.05.001
17 Deng L, Yang H, Zeng X, Study on mechanics and key technologies of laser nondestructive mirror-separation for KDP crystal. International Journal of Machine Tools & Manufacture, 2015, 94: 26–36
https://doi.org/10.1016/j.ijmachtools.2015.04.001
18 Fuchs B A, Hed P P, Baker P C. Fine diamond turning of KDP crystals. Applied Optics, 1986, 25(11): 1733–1735
https://doi.org/10.1364/AO.25.001733
19 Kozlowski M R, Thomas I M, Edwards G J, Influence of diamond turning and surface cleaning processes on the degradation of KDP crystal surfaces. Proceedings of the Society for Photo-Instrumentation Engineers, 1991, 1561: 59–69
https://doi.org/10.1117/12.50764
20 An C, Zhang Y, Xu Q, Modeling of dynamic characteristic of the aerostatic bearing spindle in an ultra-precision fly cutting machine. International Journal of Machine Tools & Manufacture, 2010, 50(4): 374–385
https://doi.org/10.1016/j.ijmachtools.2009.11.003
21 Liang Y, Chen W, Bai Q, Design and dynamic optimization of an ultraprecision diamond fly cutting machine tool for large KDP crystal machining. International Journal of Advanced Manufacturing Technology, 2013, 69(1–4): 237–244
https://doi.org/10.1007/s00170-013-5020-z
22 Liang Y, Chen W, Sun Y, Dynamic design approach of an ultra-precision machine tool used for optical parts machining. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(11): 1930–1936
https://doi.org/10.1177/0954405412458998
23 Chen W, Liang Y, Sun Y, Design philosophy of an ultra-precision fly cutting machine tool for KDP crystal machining and its implementation on the structure design. International Journal of Advanced Manufacturing Technology, 2014, 70(1–4): 429–438
https://doi.org/10.1007/s00170-013-5299-9
24 Wang J, Meng Q, Chen M, Study on the surface degenerative layer in ultra-precision machining of KDP crystals. In: Proceedings of 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. 2009, 72823U
https://doi.org/10.1117/12.831073
25 Wang J, Guo X, Meng Q, Influence on the profile accuracy in diamond turning of KDP crystal in vacuum chuck. Journal of Jiamusi University (Natural Science Edition), 2009(01): 1–3 (in Chinese)
26 Chen H, Dai Y, Zheng Z, Effect of crystallographic orientation on cutting forces and surface finish in ductile cutting of KDP crystals. Machining Science and Technology, 2011, 15(2): 231–242
https://doi.org/10.1080/10910344.2011.580701
27 Tie G, Dai Y, Guan C, Research on full-aperture ductile cutting of KDP crystals using spiral turning technique. Journal of Materials Processing Technology, 2013, 213(12): 2137–2144
https://doi.org/10.1016/j.jmatprotec.2013.06.006
28 Wang S, An C, Zhang F, An experimental and theoretical investigation on the brittle ductile transition and cutting force anisotropy in cutting KDP crystal. International Journal of Machine Tools & Manufacture, 2016, 106: 98–108
https://doi.org/10.1016/j.ijmachtools.2016.04.009
29 Chen M, Xiao G, Li D, Multiscale modeling study on the nanometric cutting process of CaF2. Key Engineering Materials, 2012, 516: 13–18
https://doi.org/10.4028/www.scientific.net/KEM.516.13
30 Zong W, Cao Z, He C, Theoretical modelling and FE simulation on the oblique diamond turning of ZnS crystal. International Journal of Machine Tools & Manufacture, 2016, 100: 55–71
https://doi.org/10.1016/j.ijmachtools.2015.10.002
31 Chen M, Pang Q, Wang J, Analysis of 3D microtopography in machined KDP crystal surfaces based on fractal and wavelet methods. International Journal of Machine Tools & Manufacture, 2008, 48(7–8): 905–913
https://doi.org/10.1016/j.ijmachtools.2007.11.002
32 Tie G, Dai Y, Guan C, Research on subsurface defects of potassium dihydrogen phosphate crystals fabricated by single point diamond turning technique. Optical Engineering, 2013, 52(3): 033401
https://doi.org/10.1117/1.OE.52.3.033401
33 Chen M, Li M, Cheng J, Study on the optical performance and characterization method of texture on KH2PO4 surface processed by single point diamond turning. Applied Surface Science, 2013, 279: 233–244
https://doi.org/10.1016/j.apsusc.2013.04.073
34 Li M, Chen M, Cheng J, Two important mechanisms damaging KH2PO4 crystal processed by ultraprecision fly cutting and their relationships with cutting parameters. Applied Optics, 2013, 52(15): 3451–3460
https://doi.org/10.1364/AO.52.003451
35 Namba Y, Yoshida K, Yoshida H, Ultraprecision grinding of optical materials for high-power lasers. Proceedings of the Society for Photo-Instrumentation Engineers, 1998, 320: 320–330
https://doi.org/10.1117/12.307042
36 Zhang Z, Wu Y, Huang H. New deformation mechanism of soft-brittle CdZnTe single crystals under nanogrinding. Scripta Materialia, 2010, 63(6): 621–624
https://doi.org/10.1016/j.scriptamat.2010.05.043
37 Wu Y, Huang H, Zou J. Transmission electron microscopy characterization of the deformation of CdZnTe single crystals induced by nanoscratching. Scripta Materialia, 2011, 65(6): 392–395
https://doi.org/10.1016/j.scriptamat.2011.05.008
38 Zhang Z, Meng Y, Guo D, Material removal mechanism of precision grinding of soft-brittle CdZnTe wafers. International Journal of Advanced Manufacturing Technology, 2010, 46(5–8): 563–569
https://doi.org/10.1007/s00170-009-2114-8
39 Li Y, Kang R, Gao H, Effect of mechanical anisotropy on grinding of CdZnTe wafers. Materials and Manufacturing Processes, 2010, 25(6): 412–417
https://doi.org/10.1080/15394450902996643
40 Kordonski W I, Golini D. Fundamentals of magnetorheological fluid utilization in high precision finishing. Journal of Intelligent Material Systems and Structures, 1999, 10(9): 683–689
https://doi.org/10.1106/011M-CJ25-64QC-F3A6
41 Jacobs S D, Golini D, Hsu Y, Magnetorheological finishing: A deterministic process for optics manufacturing. Proceedings of the Society for Photo-Instrumentation Engineers, 1995, 2576: 372–382
https://doi.org/10.1117/12.215617
42 Arrasmith S R, Kozhinova I A, Gregg L L, Details of the polishing spot in magnetorheological finishing (MRF). Proceedings of the Society for Photo-Instrumentation Engineers, 1999, 3782: 92–100
https://doi.org/10.1117/12.369175
43 Jacobs S D. Manipulating mechanics and chemistry in precision optics finishing. Science and Technology of Advanced Materials, 2007, 8(3): 153–157
https://doi.org/10.1016/j.stam.2006.12.002
44 Ma Y, Li S, Peng X, Research on polishing KDP crystals with MRF. Aviation Precision Manufacturing Technology, 2007(04): 9–12 (in Chinese)
45 Peng X, Jiao F, Chen H, Novel magnetorheological figuring of KDP crystal. Chinese Optics Letters, 2011, 10: 71–75
46 Ji F, Xu M, Wang B, Preparation of methoxyl poly (ethylene glycol) (MPEG)-coated carbonyl iron particles (CIPs) and their application in potassium dihydrogen phosphate (KDP) magnetorheological finishing (MRF). Applied Surface Science, 2015, 353: 723–727
https://doi.org/10.1016/j.apsusc.2015.06.063
47 Li F, Xie X, Tie G, Research on temperature field of KDP crystal under ion beam cleaning. Applied Optics, 2016, 55(18): 4888–4894
https://doi.org/10.1364/AO.55.004888
48 Wilson S R, Mcneil J R. Neutral ion beam figuring of large optical surfaces. Proceedings of the Society for Photo-Instrumentation Engineers, 1987, 818: 320–324
https://doi.org/10.1117/12.978903
49 Allen L, Keim R. An ion figuring system for large optic fabrication. Proceedings of the Society for Photo-Instrumentation Engineers, 1989, 1168: 33–50
https://doi.org/10.1117/12.962968
50 Chen S, Li S, Peng X, Research of polishing process to control the iron contamination on the magnetorheological finished KDP crystal surface. Applied Optics, 2015, 54(6): 1478–1484
https://doi.org/10.1364/AO.54.001478
51 Yin G, Li S, Xie X, Ultra-precision process of CaF2 single crystal. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9281: 1–6
52 Teng X. Deliquescent mechanisms and experimental study on machinability based on solution theory of KDP crystals. Dissertation for the Master’s Degree. Dalian: Dalian University of Technology, 2007, 35–37 (in Chinese)
53 Menapace J A, Ehrmann P R, Bickel R C. Magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystals: Nonaqueous fluids development, optical finish, and laser damage performance at 1064 nm and 532 nm. Proceedings of the Society for Photo-Instrumentation Engineers, 2009, 7504: 750411–750414
54 Zhang F, Guo S, Zhang Y, Effect of several processing parameters on material removal ratio in the deliquescent polishing of KDP crystals. In: Proceedings of 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies. 2009, 728227
https://doi.org/10.1117/12.830905
55 Zhang F, Guo S, Zhang Y, Research on the material removal mechanism in deliquescent polishing of KDP crystals. Key Engineering Materials, 2009, 416: 487–491
https://doi.org/10.4028/www.scientific.net/KEM.416.487
56 Gao H, Wang B, Guo D, Experimental study on abrasive-free polishing for KDP crystal. Journal of the Electrochemical Society, 2010, 157(9): H853–H856
https://doi.org/10.1149/1.3458869
57 Wang B, Li Y, Gao H. Water-in-oil dispersion for KH2PO4 (KDP) crystal CMP. Journal of Dispersion Science and Technology, 2010, 31(12): 1611–1617
https://doi.org/10.1080/01932690903297330
58 Wang X, Gao H, Chen Y, A water dissolution method for removing micro-waviness caused by SPDT process on KDP crystals. International Journal of Advanced Manufacturing Technology, 2016, 85(5–8): 1347–1360
https://doi.org/10.1007/s00170-015-8019-9
[1] Nianfeng WANG, Bicheng CHEN, Xiandong GE, Xianmin ZHANG, Wenbin WANG. Modular crawling robots using soft pneumatic actuators[J]. Front. Mech. Eng., 2021, 16(1): 163-175.
[2] Haixiao LIU, Li LI, Zhikang OUYANG, Wei SUN. Soft curvature sensors for measuring the rotational angles of mechanical fingers[J]. Front. Mech. Eng., 2020, 15(4): 610-621.
[3] Elijah Kwabena ANTWI, Kui LIU, Hao WANG. A review on ductile mode cutting of brittle materials[J]. Front. Mech. Eng., 2018, 13(2): 251-263.
[4] Xiaoguang GUO,Qiang LI,Tao LIU,Renke KANG,Zhuji JIN,Dongming GUO. Advances in molecular dynamics simulation of ultra-precision machining of hard and brittle materials[J]. Front. Mech. Eng., 2017, 12(1): 89-98.
[5] Yanfei WANG, Jianming GONG, Yong JIANG, Wenchun JIANG, Wang JIANG. Ductility loss of hydrogen-charged and releasing 304L steel[J]. Front Mech Eng, 2013, 8(3): 298-304.
[6] Bing TU, Desheng LI, Enhuai LIN, Bin LUO, Jian HE, Lezhi YE, Jiliang LIU, Yuezhong WANG. Rotating magnetic beacons magnetic field strength size in SAGD[J]. Front Mech Eng Chin, 2010, 5(4): 446-449.
[7] Qi CHEN, Ke XIONG, Kan BIAN, Ning JIN, Bangfeng WANG, . Preparation and performance of soft actuator based on IPMC with silver electrodes[J]. Front. Mech. Eng., 2009, 4(4): 436-440.
[8] Cunfeng KANG, Chong WANG, Chunmin MA, Xudong HUANG, Renyuan FEI. Run-time system based on LinSERCANS and Soft-PLC[J]. Front Mech Eng Chin, 2009, 4(2): 120-124.
[9] WANG Zhenmin, XUE Jiaxiang, WANG Fuguang, HUANG Shisheng. A novel soft-switching twin arc pulse MAG welding inverter[J]. Front. Mech. Eng., 2007, 2(2): 224-227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed