Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2017, Vol. 12 Issue (2) : 193-202    https://doi.org/10.1007/s11465-017-0448-8
RESEARCH ARTICLE
Full-band error control and crack-free surface fabrication techniques for ultra-precision fly cutting of large-aperture KDP crystals
F. H. ZHANG1(), S. F. WANG1,2, C. H. AN2, J. WANG2, Q. XU2
1. Department of Mechanical Engineering, Harbin Institute of Technology, Harbin 150001, China
2. Chengdu Fine Optical Engineering Research Center, Chengdu 610041, China
 Download: PDF(909 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Large-aperture potassium dihydrogen phosphate (KDP) crystals are widely used in the laser path of inertial confinement fusion (ICF) systems. The most common method of manufacturing half-meter KDP crystals is ultra-precision fly cutting. When processing KDP crystals by ultra-precision fly cutting, the dynamic characteristics of the fly cutting machine and fluctuations in the fly cutting environment are translated into surface errors at different spatial frequency bands. These machining errors should be suppressed effectively to guarantee that KDP crystals meet the full-band machining accuracy specified in the evaluation index. In this study, the anisotropic machinability of KDP crystals and the causes of typical surface errors in ultra-precision fly cutting of the material are investigated. The structures of the fly cutting machine and existing processing parameters are optimized to improve the machined surface quality. The findings are theoretically and practically important in the development of high-energy laser systems in China.

Keywords ultra-precision fly cutting      large-aperture KDP crystals      spatial frequency      processing error     
Corresponding Author(s): F. H. ZHANG   
Just Accepted Date: 14 April 2017   Online First Date: 10 May 2017    Issue Date: 19 June 2017
 Cite this article:   
F. H. ZHANG,S. F. WANG,C. H. AN, et al. Full-band error control and crack-free surface fabrication techniques for ultra-precision fly cutting of large-aperture KDP crystals[J]. Front. Mech. Eng., 2017, 12(2): 193-202.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-017-0448-8
https://academic.hep.com.cn/fme/EN/Y2017/V12/I2/193
Fig.1  Application of large-aperture KDP crystals in a high-energy laser system [1]
BandSpatial frequency/mmEvaluation indexSpecification
1400–33GRMS/(nm·cm−1)11
233–2.5RMS/nm5
32.5–0.12RMS/nm1.5
40.12–0.01RMS/nm1.5
Tab.1  Evaluation index for large-aperture KDP crystals [3]
Fig.2  Processing a large-aperture KDP crystal by fly cutting: (a) Schematic of the process; (b) fly cutting machine for KDP crystals
Fig.3  Fluid-structure coupled analysis of the vacuum absorption process: (a) Surface shape of the vacuum chuck; (b) pressure distribution inside the gas; (c) deformation of the KDP crystal; (d) displacement of the top KDP surface
Fig.4  Surface micro waviness distributed along the cutting direction
Fig.5  Dynamic behavior of the spindle system and surface micro waviness obtained by simulation: (a) Deformation contour and displacement curve of the spindle system; (b) simulated micro waviness
Fig.6  Surface micro waviness distributed along the feeding direction
Fig.7  Influence of D on the magnitude of micro waviness
Fig.8  Crystal surface processed by the new fly cutting machine
Fig.9  Influence of rotating speed fluctuation on surface roughness: (a) Micro waviness induced by the fluctuation in rotating speed; (b) surface profile after optimization of the spindle motor
Fig.10  Measuring the BDT depth on the doubler plane of a KDP crystal: (a) Principle for measuring BDT depth; (b) definition of cutting directions
Fig.11  BDT depth on the doubler plane of the KDP crystal
Fig.12  Surface and subsurface of the transition shoulder
Fig.13  Profiles of the processed surface of the doubler plane
Fig.14  Surface roughness of the KDP crystal produced with the optimized cutting parameters
1 Spaeth M L, Manes K R, Kalantar D H, et al.Description of the NIF laser. Fusion Science and Technology, 2016, 69(1): 25–145 
https://doi.org/10.13182/FST15-144
2 Manes K R, Spaeth M L, Adams J J, et al. Damage mechanisms avoided or managed for NIF large optics. Fusion Science and Technology, 2016, 69(1): 146–249 
https://doi.org/10.13182/FST15-139
3 Campbell J H, Hawley-Fedder R A, Stolz C J, et al. NIF optical materials and fabrication technologies: An overview. Proceedings of SPIE, Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility, 2004, 5341: 84–101
https://doi.org/10.1117/12.538471
4 Fang T, Lambropoulos J C. Microhardness and indentation fracture of potassium dihydrogen phosphate (KDP). Journal of the American Ceramic Society, 2002, 85(1): 174–178
https://doi.org/10.1111/j.1151-2916.2002.tb00062.x
5 Menapace J A, Ehrmann P R, Bickel R C. Magnetorheological finishing (MRF) of potassium dihydrogen phosphate (KDP) crystals: Nonaqueous fluids development, optical finish, and laser damage performance ant 1064 nm and 532 nm. Proceedings of SPIE, Laser-Induced Damage in Optical Materials, 2009, 7504: 750414
https://doi.org/10.1117/12.836913
6 Zhao Q, Wang Y, Yu G, et al. Investigation of anisotropic mechanisms in ultra-precision diamond machining of KDP crystal. Journal of Materials Processing Technology, 2009, 209(8): 4169–4177
https://doi.org/10.1016/j.jmatprotec.2008.10.010
7 An C, Wang J, Zhang F, et al. Mid-spatial frequency micro-waviness on machined surfaces by ultra-precision fly-cutting. Nanotechnology and Precision Engineering, 2010, 8: 493–446 (in Chinese)
8 Wang S, Fu P, Zhang F, et al. Investigation of surface micro waviness in single point diamond fly cutting. Journal of Harbin Institute of Technology, 2014, 21: 99–103
9 Xu Q, Wang J. Analysis of the influence of vacuum chucking on the distortion of the KDP crystal. Proceedings of SPIE, Advanced Optical Manufacturing and Testing Technology, 2000, 4231: 464–468
https://doi.org/10.1117/12.402770
10 Chen W, Liang Y, Luo X, et al. Multi-scale surface simulation of the KDP crystal fly-cutting machining. International Journal of Advanced Manufacturing Technology, 2014, 73(1–4): 289–297
https://doi.org/10.1007/s00170-014-5748-0
11 Zong W, Li Z, Zhang L, et al. Finite element simulation of diamond tool geometries affecting the 3D surface topography in fly cutting of KDP crystals. International Journal of Advanced Manufacturing Technology, 2013, 68(9–12): 1927–1936
https://doi.org/10.1007/s00170-013-4804-5
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed