Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2023, Vol. 18 Issue (2) : 29    https://doi.org/10.1007/s11465-022-0745-8
RESEARCH ARTICLE
Development of lunar regolith-based composite for in-situ 3D printing via high-pressure extrusion system
Hua ZHAO1, Jihong ZHU1,2(), Shangqin YUAN1,3(), Shaoying LI1, Weihong ZHANG1
1. State IJR Center of Aerospace Design and Additive Manufacturing, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
2. Key Laboratory of Metal High Performance Additive Manufacturing and Innovative Design, MIIT China, Northwestern Polytechnical University, Xi’an 710072, China
3. Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China
 Download: PDF(7846 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To fully utilize the in-situ resources on the moon to facilitate the establishment of a lunar habitat is significant to realize the long-term residence of mankind on the moon and the deep space exploration in the future. Thus, intensive research works have been conducted to develop types of 3D printing approach to adapt to the extreme environment and utilize the lunar regolith for in-situ construction. However, the in-situ 3D printing using raw lunar regolith consumes extremely high energy and time. In this work, we proposed a cost-effective melting extrusion system for lunar regolith-based composite printing, and engineering thermoplastic powders are employed as a bonding agent for lunar regolith composite. The high-performance nylon and lunar regolith are uniformly pre-mixed in powder form with different weight fractions. The high-pressure extrusion system is helpful to enhance the interface affinity of polymer binders with lunar regolith as well as maximize the loading ratio of in-situ resources of lunar regolith. Mechanical properties such as tensile strength, elastic modulus, and Poisson’s ratio of the printed specimens were evaluated systematically. Especially, the impact performance was emphasized to improve the resistance of the meteorite impact on the moon. The maximum tensile strength and impact toughness reach 36.2 MPa and 5.15 kJ/m2, respectively. High-pressure melt extrusion for lunar regolith composite can increase the effective loading fraction up to 80 wt.% and relatively easily adapt to extreme conditions for in-situ manufacturing.

Keywords in-situ resource utilization      melt extrusion molding      lunar regolith-based composites      mechanical properties      additive manufacturing     
Corresponding Author(s): Jihong ZHU,Shangqin YUAN   
About author: * These authors contributed equally to this work.
Just Accepted Date: 13 December 2022   Issue Date: 30 June 2023
 Cite this article:   
Hua ZHAO,Jihong ZHU,Shangqin YUAN, et al. Development of lunar regolith-based composite for in-situ 3D printing via high-pressure extrusion system[J]. Front. Mech. Eng., 2023, 18(2): 29.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-022-0745-8
https://academic.hep.com.cn/fme/EN/Y2023/V18/I2/29
SampleWeight fraction/wt.%
SiO2TiO2Al2O3FeOMgOCaONa2OK2OOthers
Apollo 1448.101.7017.4010.409.4010.700.700.551.05
CE-542.205.0010.8022.506.4811.000.260.191.57
Basalt-1#54.481.3914.898.666.317.162.710.394.01
Basalt-2#45.904.8712.178.719.587.823.251.815.89
Basalt-3#50.020.9215.787.606.128.962.850.327.43
Tab.1  Weight fraction with material composition of lunar regolith and simulants
Fig.1  Particle size distribution of lunar regolith simulant.
Fig.2  Schematic diagram of the printer for the lunar regolith composite: (a) piston-based pellet extruder and (b) screw-based pellet extruder.
Fig.3  Geometric parameters of the standard specimens for mechanical testing: (a) tensile specimen and (b) impact specimen.
ParametersValues
Nozzle diameter1.0 mm
Layer height0.8 mm
Piston diameter18 mm
Printing temperature225, 230, 235 °C
Bed temperature70 °C
Printing speed7, 8, 9 mm/s
Extrusion speed0.02 mm/s
Number of contours2
Infill percentage100%
Infill patternRectilinear 45°/?45°
Tab.2  Process parameters for tensile specimen fabrication
Fig.4  Schematic diagram of the internal infill pattern and path for the tensile specimen: (a) infill pattern and (b) 45°/?45° rectilinear infill path.
ParametersValues
Nozzle diameter1.0 mm
Layer height0.8 mm
Piston diameter18 mm
Printing temperature230 °C
Bed temperature70 °C
Printing speed7 mm/s
Extrusion speed0.02 mm/s
Number of contours2
Infill percentage100%
Infill pattern45°/?45°, 0°/90°
Tab.3  Process parameters for impact specimen fabrication
Fig.5  Schematic diagram of the internal infill path for the impact specimen: (a) 45°/?45° rectilinear infill path and (b) 0°/90° rectilinear infill path.
MaterialOnset melting temperature/°COffset melting temperature/°CMelting peak/°CEnthalpy of melting/(J·g?1)Onset recrystallization temperature/°COffset recrystallization temperature/°CRecrystallization peak/°CEnthalpy of recrystallization/(J·g?1)Glass window width/°C
PA12-Basalt40wt.%181.6190.8187.958.03152.1140.8147.2?31.1029.5
PA12-Basalt50wt.%181.6190.5187.944.54152.6141.3147.9?26.5829.0
PA12-Basalt60wt.%181.5190.3187.736.03153.1142.3148.7?21.8128.4
Tab.4  Melting and recrystallization properties of PA12-Basalt composite powders
Fig.6  Differential scanning calorimetry curves of lunar regolith composite powder at different basalt weight fractions.
MaterialOnset decomposition temperature/°COffset decomposition temperature/°CDecomposition peak/°CMass loss/%
PA12-Basalt40wt.%375.5518.6439.849.1
PA12-Basalt50wt.%372.3513.2442.744.2
PA12-Basalt60wt.%371.3504.4440.525.5
Tab.5  Decomposition properties of PA12-Basalt composite powders
Fig.7  Thermogravimetric analysis curves of lunar regolith composite at different basalt weight fractions: (a) PA12-Basalt40wt.%, (b) PA12-Basalt50wt.%, and (c) PA12-Basalt60wt.%.
Fig.8  Scanning electron microscope images of lunar regolith composite powders: (a) PA12-Basalt40wt.%, (b) PA12-Basalt50wt.%, and (c) PA12-Basalt60wt.%.
No.Weight fraction/wt.%Printing temperature/°CPrinting speed/(mm·s?1)σb/MPaE/MPa
140225736.1621674.18
250225723.0551634.31
360225719.5002443.41
440230722.5801382.84
550230721.7171702.24
660230720.5561602.23
740235725.4441531.78
850235723.0411763.04
960235720.0101803.54
1040225832.3921467.06
1150225821.3881682.22
1260225818.8181827.58
1340230821.5101322.97
1450230819.4281662.41
1560230817.1401594.13
1640235824.7521334.63
1750235821.2851455.93
1860235817.3891748.09
1940225930.6931152.13
2050225918.2151515.21
2160225915.5811443.74
2240230920.8981328.17
2350230918.5011460.74
2460230915.4241574.20
2540235922.9591271.04
2650235918.3191343.28
2760235919.4691763.33
Tab.6  Mechanical properties of tensile specimens under different process parameters
Fig.9  Horizontal and tangential micromorphology of printed specimens: (a) PA12-Basalt40wt.%, (b) PA12-Basalt50wt.%, and (c) PA12-Basalt60wt.%.
Fig.10  Effects of weight fraction on tensile mechanical properties with (a) 225 °C, (b) 230 °C, and (c) 235 °C.
Fig.11  Effects of printing temperature on tensile mechanical properties with (a) PA12-Basalt40wt.%, (b) PA12-Basalt50wt.%, and (c) PA12-Basalt60wt.%.
Fig.12  Stress?strain curves for the tensile specimens under different printing speed (3 days) with (a) PA12-Basalt40wt.%, (b) PA12-Basalt50wt.%, and (c) PA12-Basalt60wt.%.
Fig.13  Stress?strain curves for the tensile specimens under different printing speed (30 days) with (a) PA12-Basalt40wt.%, (b) PA12-Basalt50wt.%, and (c) PA12-Basalt60wt.%.
Fig.14  Impact testing results of lunar regolith composite at different basalt weight fractions: (a) absorbed energy and (b) impact toughness.
Fig.15  Platform of screw-based pellet extruder: (a) schematic platform, (b) physical platform, (c) infrared image of the heated nozzle, (d, e) printed lunar habitat model, (f) printing process, (g) printed honeycomb structure, and (h) printed board structure.
ParameterValue
Basalt weight fraction80 wt.%
Layer height4 mm
Nozzle diameter5 mm
Raster gap4 mm
Printing temperature235 °C
Bed temperature70 °C
Extrusion screw rotation speed8?10 r/min
Feeding screw rotation speed12.5?15 r/min
Robot motion speed8?9 mm/s
Infill percentage100%
Tab.7  Process parameters of screw-based pellet extrusion
Abbreviations
AMAdditive manufacturing
DSCDifferential scanning calorimetry
ISRUIn-situ resource utilization
MAMMotor-assisted microsyringe
SEMScanning electron microscope
TGAThermogravimetric analysis
Variables
akImpact toughness
AkImpact energy
EYoung’s modulus
TmMelting peak temperature
TrRecrystallization peak temperature
σbTensile strength
  
1 W R Wu, D Y Yu. Development of deep space exploration and its future key technologies. Journal of Deep Space Exploration, 2014, 1(1): 5–17 (in Chinese)
2 W R Wu, J Z Liu, Y H Tang, D Y Yu, G B Yu, Z Zhang. China lunar exploration program. Journal of Deep Space Exploration, 2019, 6(5): 405–416 (in Chinese)
3 K Matsumoto, N Kamimori, Y Takizawa, M Kato, M Oda, S Wakabayashi, S, KawamotoT Okada, T Iwata, M Ohtake. Japanese lunar exploration long-term plan. Acta Astronautica, 2006, 59(1–5): 68–76
https://doi.org/10.1016/j.actaastro.2006.02.020
4 M Braun , N Gollins , V Trivino , S Hosseini , R Schonenborg , M Landgraf . Human lunar return: an analysis of human lunar exploration scenarios within the upcoming decade. Acta Astronautica, 2020, 177: 737–748
https://doi.org/10.1016/j.actaastro.2020.03.037
5 H Benaroya, L Bernold. Engineering of lunar bases. Acta Astronautica, 2008, 62(4–5): 277–299
https://doi.org/10.1016/j.actaastro.2007.05.001
6 M Y Marov , E N Slyuta . Early steps toward the lunar base deployment: some prospects. Acta Astronautica, 2021, 181: 28–39
https://doi.org/10.1016/j.actaastro.2021.01.002
7 G B Sanders , W E Larson . Integration of in-situ resource utilization into lunar/mars exploration through field analogs. Advances in Space Research, 2011, 47(1): 20–29
https://doi.org/10.1016/j.asr.2010.08.020
8 G B Sanders , W E Larson . Progress made in lunar in-situ resource utilization under NASA’s exploration technology and development program. Journal of Aerospace Engineering, 2013, 26(1): 5–17
https://doi.org/10.1061/(ASCE)AS.1943-5525.0000208
9 A Meurisse , J Carpenter . Past, present and future rationale for space resource utilisation. Planetary and Space Science, 2020, 182: 104853
https://doi.org/10.1016/j.pss.2020.104853
10 J N Rasera , J J Cilliers , J A Lamamy , K Hadler . The beneficiation of lunar regolith for space resource utilisation: a review. Planetary and Space Science, 2020, 186: 104879
https://doi.org/10.1016/j.pss.2020.104879
11 T Zhang , C Y Chao , Z X Yao , K Xu , W X Zhang , X L Ding , S T Liu , Z Zhao , Y H An , B Wang , S F Yu , B Wang , H W Chen . The technology of lunar regolith environment construction on earth. Acta Astronautica, 2021, 178: 216–232
https://doi.org/10.1016/j.actaastro.2020.08.039
12 Y G Shkuratov , N V Bondarenko . Regolith layer thickness mapping of the moon by radar and optical data. Icarus, 2001, 149(2): 329–338
https://doi.org/10.1006/icar.2000.6545
13 J Miller , L Taylor , C Zeitlin , L Heilbronn , S Guetersloh , M DiGiuseppe , Y Iwata , T Murakami . Lunar soil as shielding against space radiation. Radiation Measurements, 2009, 44(2): 163–167
https://doi.org/10.1016/j.radmeas.2009.01.010
14 C L Li , H Hu , M F Yang , Z Y Pei , Q Zhou , X Ren , B Liu , D W Liu , X G Zeng , G L Zhang , H B Zhang , J J Liu , Q Wang , X J Deng , C J Xiao , Y G Yao , D S Xue , W Zuo , Y Su , W B Wen , Z Y Ouyang . Characteristics of the lunar samples returned by Chang’e-5 mission. National Science Review, 2022, 9(2): nwab188
https://doi.org/10.1093/nsr/nwab188
15 H Zhang , X Zhang , G Zhang , K Q Dong , X J Deng , X S Gao , Y D Yang , Y Xiao , X Bai , K X Liang , Y W Liu , W B Ma , S F Zhao , C Zhang , X J Zhang , J Song , W Yao , H Chen , W H Wang , Z G Zou , M F Yang . Size, morphology, and composition of lunar samples returned by Chang’e-5 mission. Science China Physics, Mechanics & Astronomy, 2021, 65(2): 229511
https://doi.org/10.1007/s11433-021-1818-1
16 S Hu , H C He , J L Ji , Y T Lin , H J Hui , M Anand , R Tartèse , Y H Yan , J L Hao , L X Gu , Q Guo , H Y He , Z Y Ouyang . A dry lunar mantle reservoir for young mare basalts of Chang’e-5. Nature, 2021, 600(7887): 49–53
https://doi.org/10.1038/s41586-021-04107-9
17 H C Tian , H Wang , Y Chen , W Yang , Q Zhou , C Zhang , H L Lin , C Huang , S T Wu , L H Jia , L Xu , D Zhang , X G Li , R Chang , Y H Yang , L W Xie , D P Zhang , G L Zhang , S H Yang , F Y Wu . Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane. Nature, 2021, 600(7887): 59–63
https://doi.org/10.1038/s41586-021-04119-5
18 Q L Li , Q Zhou , Y Liu , Z Y Xiao , Y T Lin , J H Li , H X Ma , G Q Tang , S Guo , X Tang , J Y Yuan , J Li , F Y Wu , Z Y Ouyang , C L Li , X H Li . Two-billion-year-old volcanism on the moon from Chang’e-5 basalts. Nature, 2021, 600(7887): 54–58
https://doi.org/10.1038/s41586-021-04100-2
19 N C Costes , W D Carrier , J K Mitchell , R F Scott . Apollo 11 soil mechanics investigation. Science, 1970, 167(3918): 739–741
https://doi.org/10.1126/science.167.3918.739
20 L Sibille, P K Carpenter, R A Schlagheck, R A French. Lunar Regolith Simulant Materials: Recommendations for Standardization, Production, and Usage. NASA Technical Reports NASA/TP-2006–214605, 2006
21 Y C Zheng , S J Wang , Z Y Ouyang , Y L Zou , J Z Liu , C L Li , X Y Li , J M Feng . CAS-1 lunar soil simulant. Advances in Space Research, 2009, 43(3): 448–454
https://doi.org/10.1016/j.asr.2008.07.006
22 K A Alshibli , A Hasan . Strength properties of JSC-1A lunar regolith simulant. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 673–679
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000068
23 H Arslan, S Sture, S Batiste. Experimental simulation of tensile behavior of lunar soil simulant JSC-1. Materials Science and Engineering: A, 2008, 478(1–2): 201–207
https://doi.org/10.1016/j.msea.2007.05.113
24 N Kalapodis , G Kampas , O J Ktenidou . A review towards the design of extraterrestrial structures: from regolith to human outposts. Acta Astronautica, 2020, 175: 540–569
https://doi.org/10.1016/j.actaastro.2020.05.038
25 M Isachenkov , S Chugunov , I Akhatov , I Shishkovsky . Regolith-based additive manufacturing for sustainable development of lunar infrastructure—an overview. Acta Astronautica, 2021, 180: 650–678
https://doi.org/10.1016/j.actaastro.2021.01.005
26 B Khoshnevis, M P Bodiford, K H Burks, E Ethridge, D Tucker, W Kim, H Toutanji, M R Fiske. Lunar contour crafting—a novel technique for ISRU-based habitat development. In: Proceedings of the 43rd AIAA Aerospace Science Meeting and Exhibit. Reno: AIAA, 2005, AIAA 2005-538
https://doi.org/10.2514/6.2005-538
27 G Davis , C Montes , S Eklund . Preparation of lunar regolith based geopolymer cement under heat and vacuum. Advances in Space Research, 2017, 59(7): 1872–1885
https://doi.org/10.1016/j.asr.2017.01.024
28 K T Wang , P N Lemougna , Q Tang , W Li , X M Cui . Lunar regolith can allow the synthesis of cement materials with near-zero water consumption. Gondwana Research, 2017, 44: 1–6
https://doi.org/10.1016/j.gr.2016.11.001
29 H A Toutanji , S Evans , R N Grugel . Performance of lunar sulfur concrete in lunar environments. Construction & Building Materials, 2012, 29: 444–448
https://doi.org/10.1016/j.conbuildmat.2011.10.041
30 S Q Zhou , X Y Zhu , C H Lu , F Li . Synthesis and characterization of geopolymer from lunar regolith simulant based on natural volcanic scoria. Chinese Journal of Aeronautics, 2022, 35(1): 144–159
https://doi.org/10.1016/j.cja.2020.06.014
31 G Cesaretti , E Dini , X De Kestelier , V Colla , L Pambaguian . Building components for an outpost on the lunar soil by means of a novel 3D printing technology. Acta Astronautica, 2014, 93: 430–450
https://doi.org/10.1016/j.actaastro.2013.07.034
32 Balla V Krishna , L B Roberson , G W O’Connor , S Trigwell , S Bose , A Bandyopadhyay . First demonstration on direct laser fabrication of lunar regolith parts. Rapid Prototyping Journal, 2012, 18(6): 451–457
https://doi.org/10.1108/13552541211271992
33 H Zhao , L Meng , S Y Li , J H Zhu , S Q Yuan , W H Zhang . Development of lunar regolith composite and structure via laser-assisted sintering. Frontiers of Mechanical Engineering, 2022, 17(1): 6
https://doi.org/10.1007/s11465-021-0662-2
34 A Meurisse , A Makaya , C Willsch , M Sperl . Solar 3D printing of lunar regolith. Acta Astronautica, 2018, 152: 800–810
https://doi.org/10.1016/j.actaastro.2018.06.063
35 A Goulas , R J Friel . 3D printing with moondust. Rapid Prototyping Journal, 2016, 22(6): 864–870
https://doi.org/10.1108/RPJ-02-2015-0022
36 A Goulas , R A Harris , R J Friel . Additive manufacturing of physical assets by using ceramic multicomponent extra-terrestrial materials. Additive Manufacturing, 2016, 10: 36–42
https://doi.org/10.1016/j.addma.2016.02.002
37 A Goulas , J G P Binner , R A Harris , R J Friel . Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing. Applied Materials Today, 2017, 6: 54–61
https://doi.org/10.1016/j.apmt.2016.11.004
38 M Fateri , A Gebhardt . Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications. International Journal of Applied Ceramic Technology, 2015, 12(1): 46–52
https://doi.org/10.1111/ijac.12326
39 M Liu , W Z Tang , W Y Duan , S Li , R Dou , G Wang , B S Liu , L Wang . Digital light processing of lunar regolith structures with high mechanical properties. Ceramics International, 2019, 45(5): 5829–5836
https://doi.org/10.1016/j.ceramint.2018.12.049
40 A E Jakus , K D Koube , N R Geisendorfer , R N Shah . Robust and elastic lunar and martian structures from 3D-printed regolith inks. Scientific Reports, 2017, 7(1): 44931
https://doi.org/10.1038/srep44931
41 J X Liu, Y Cui, J P Yang, Z S Wu. Effect of basalt composition and mineral on high temperature melting process. Journal of Yanshan University, 2017, 41(4): 323–328 (in Chinese)
[1] Jihong ZHU, Jiannan YANG, Weihong ZHANG, Xiaojun GU, Han ZHOU. Design and applications of morphing aircraft and their structures[J]. Front. Mech. Eng., 2023, 18(3): 34-.
[2] Fatma BAYATA, Süleyman Batuhan VATAN. Mechanical properties of vanadium-alloyed austempered ductile iron for crankshaft applications[J]. Front. Mech. Eng., 2023, 18(3): 30-.
[3] Mingyue SHEN, Fengzhou FANG. Advances in polishing of internal structures on parts made by laser-based powder bed fusion[J]. Front. Mech. Eng., 2023, 18(1): 8-.
[4] Hua ZHAO, Lu MENG, Shaoying LI, Jihong ZHU, Shangqin YUAN, Weihong ZHANG. Development of lunar regolith composite and structure via laser-assisted sintering[J]. Front. Mech. Eng., 2022, 17(1): 6-.
[5] Jinghua XU, Hongsheng SHENG, Shuyou ZHANG, Jianrong TAN, Jinlian DENG. Surface accuracy optimization of mechanical parts with multiple circular holes for additive manufacturing based on triangular fuzzy number[J]. Front. Mech. Eng., 2021, 16(1): 133-150.
[6] Sheng WANG, Jun WANG, Yingjie XU, Weihong ZHANG, Jihong ZHU. Compressive behavior and energy absorption of polymeric lattice structures made by additive manufacturing[J]. Front. Mech. Eng., 2020, 15(2): 319-327.
[7] Emmanuel TROMME, Atsushi KAWAMOTO, James K. GUEST. Topology optimization based on reduction methods with applications to multiscale design and additive manufacturing[J]. Front. Mech. Eng., 2020, 15(1): 151-165.
[8] Xiaodong NIU, Surinder SINGH, Akhil GARG, Harpreet SINGH, Biranchi PANDA, Xiongbin PENG, Qiujuan ZHANG. Review of materials used in laser-aided additive manufacturing processes to produce metallic products[J]. Front. Mech. Eng., 2019, 14(3): 282-298.
[9] Jikai LIU, Qian CHEN, Xuan LIANG, Albert C. TO. Manufacturing cost constrained topology optimization for additive manufacturing[J]. Front. Mech. Eng., 2019, 14(2): 213-221.
[10] Hadi MIYANAJI, Morgan ORTH, Junaid Muhammad AKBAR, Li YANG. Process development for green part printing using binder jetting additive manufacturing[J]. Front. Mech. Eng., 2018, 13(4): 504-512.
[11] Omotoyosi H. FAMODIMU, Mark STANFORD, Chike F. ODUOZA, Lijuan ZHANG. Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite[J]. Front. Mech. Eng., 2018, 13(4): 520-527.
[12] Wentao YAN, Stephen LIN, Orion L. KAFKA, Cheng YU, Zeliang LIU, Yanping LIAN, Sarah WOLFF, Jian CAO, Gregory J. WAGNER, Wing Kam LIU. Modeling process-structure-property relationships for additive manufacturing[J]. Front. Mech. Eng., 2018, 13(4): 482-492.
[13] Kwok Siong TEH. Additive direct-write microfabrication for MEMS: A review[J]. Front. Mech. Eng., 2017, 12(4): 490-509.
[14] Shutian LIU,Quhao LI,Wenjiong CHEN,Liyong TONG,Gengdong CHENG. An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures[J]. Front. Mech. Eng., 2015, 10(2): 126-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed