|
|
|
Development of lunar regolith-based composite for in-situ 3D printing via high-pressure extrusion system |
Hua ZHAO1, Jihong ZHU1,2( ), Shangqin YUAN1,3( ), Shaoying LI1, Weihong ZHANG1 |
1. State IJR Center of Aerospace Design and Additive Manufacturing, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China 2. Key Laboratory of Metal High Performance Additive Manufacturing and Innovative Design, MIIT China, Northwestern Polytechnical University, Xi’an 710072, China 3. Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China |
|
|
|
|
Abstract To fully utilize the in-situ resources on the moon to facilitate the establishment of a lunar habitat is significant to realize the long-term residence of mankind on the moon and the deep space exploration in the future. Thus, intensive research works have been conducted to develop types of 3D printing approach to adapt to the extreme environment and utilize the lunar regolith for in-situ construction. However, the in-situ 3D printing using raw lunar regolith consumes extremely high energy and time. In this work, we proposed a cost-effective melting extrusion system for lunar regolith-based composite printing, and engineering thermoplastic powders are employed as a bonding agent for lunar regolith composite. The high-performance nylon and lunar regolith are uniformly pre-mixed in powder form with different weight fractions. The high-pressure extrusion system is helpful to enhance the interface affinity of polymer binders with lunar regolith as well as maximize the loading ratio of in-situ resources of lunar regolith. Mechanical properties such as tensile strength, elastic modulus, and Poisson’s ratio of the printed specimens were evaluated systematically. Especially, the impact performance was emphasized to improve the resistance of the meteorite impact on the moon. The maximum tensile strength and impact toughness reach 36.2 MPa and 5.15 kJ/m2, respectively. High-pressure melt extrusion for lunar regolith composite can increase the effective loading fraction up to 80 wt.% and relatively easily adapt to extreme conditions for in-situ manufacturing.
|
| Keywords
in-situ resource utilization
melt extrusion molding
lunar regolith-based composites
mechanical properties
additive manufacturing
|
|
Corresponding Author(s):
Jihong ZHU,Shangqin YUAN
|
| About author: * These authors contributed equally to this work. |
|
Just Accepted Date: 13 December 2022
Issue Date: 30 June 2023
|
|
| 1 |
W R Wu, D Y Yu. Development of deep space exploration and its future key technologies. Journal of Deep Space Exploration, 2014, 1(1): 5–17 (in Chinese)
|
| 2 |
W R Wu, J Z Liu, Y H Tang, D Y Yu, G B Yu, Z Zhang. China lunar exploration program. Journal of Deep Space Exploration, 2019, 6(5): 405–416 (in Chinese)
|
| 3 |
K Matsumoto, N Kamimori, Y Takizawa, M Kato, M Oda, S Wakabayashi, S, KawamotoT Okada, T Iwata, M Ohtake. Japanese lunar exploration long-term plan. Acta Astronautica, 2006, 59(1–5): 68–76
https://doi.org/10.1016/j.actaastro.2006.02.020
|
| 4 |
M Braun , N Gollins , V Trivino , S Hosseini , R Schonenborg , M Landgraf . Human lunar return: an analysis of human lunar exploration scenarios within the upcoming decade. Acta Astronautica, 2020, 177: 737–748
https://doi.org/10.1016/j.actaastro.2020.03.037
|
| 5 |
H Benaroya, L Bernold. Engineering of lunar bases. Acta Astronautica, 2008, 62(4–5): 277–299
https://doi.org/10.1016/j.actaastro.2007.05.001
|
| 6 |
M Y Marov , E N Slyuta . Early steps toward the lunar base deployment: some prospects. Acta Astronautica, 2021, 181: 28–39
https://doi.org/10.1016/j.actaastro.2021.01.002
|
| 7 |
G B Sanders , W E Larson . Integration of in-situ resource utilization into lunar/mars exploration through field analogs. Advances in Space Research, 2011, 47(1): 20–29
https://doi.org/10.1016/j.asr.2010.08.020
|
| 8 |
G B Sanders , W E Larson . Progress made in lunar in-situ resource utilization under NASA’s exploration technology and development program. Journal of Aerospace Engineering, 2013, 26(1): 5–17
https://doi.org/10.1061/(ASCE)AS.1943-5525.0000208
|
| 9 |
A Meurisse , J Carpenter . Past, present and future rationale for space resource utilisation. Planetary and Space Science, 2020, 182: 104853
https://doi.org/10.1016/j.pss.2020.104853
|
| 10 |
J N Rasera , J J Cilliers , J A Lamamy , K Hadler . The beneficiation of lunar regolith for space resource utilisation: a review. Planetary and Space Science, 2020, 186: 104879
https://doi.org/10.1016/j.pss.2020.104879
|
| 11 |
T Zhang , C Y Chao , Z X Yao , K Xu , W X Zhang , X L Ding , S T Liu , Z Zhao , Y H An , B Wang , S F Yu , B Wang , H W Chen . The technology of lunar regolith environment construction on earth. Acta Astronautica, 2021, 178: 216–232
https://doi.org/10.1016/j.actaastro.2020.08.039
|
| 12 |
Y G Shkuratov , N V Bondarenko . Regolith layer thickness mapping of the moon by radar and optical data. Icarus, 2001, 149(2): 329–338
https://doi.org/10.1006/icar.2000.6545
|
| 13 |
J Miller , L Taylor , C Zeitlin , L Heilbronn , S Guetersloh , M DiGiuseppe , Y Iwata , T Murakami . Lunar soil as shielding against space radiation. Radiation Measurements, 2009, 44(2): 163–167
https://doi.org/10.1016/j.radmeas.2009.01.010
|
| 14 |
C L Li , H Hu , M F Yang , Z Y Pei , Q Zhou , X Ren , B Liu , D W Liu , X G Zeng , G L Zhang , H B Zhang , J J Liu , Q Wang , X J Deng , C J Xiao , Y G Yao , D S Xue , W Zuo , Y Su , W B Wen , Z Y Ouyang . Characteristics of the lunar samples returned by Chang’e-5 mission. National Science Review, 2022, 9(2): nwab188
https://doi.org/10.1093/nsr/nwab188
|
| 15 |
H Zhang , X Zhang , G Zhang , K Q Dong , X J Deng , X S Gao , Y D Yang , Y Xiao , X Bai , K X Liang , Y W Liu , W B Ma , S F Zhao , C Zhang , X J Zhang , J Song , W Yao , H Chen , W H Wang , Z G Zou , M F Yang . Size, morphology, and composition of lunar samples returned by Chang’e-5 mission. Science China Physics, Mechanics & Astronomy, 2021, 65(2): 229511
https://doi.org/10.1007/s11433-021-1818-1
|
| 16 |
S Hu , H C He , J L Ji , Y T Lin , H J Hui , M Anand , R Tartèse , Y H Yan , J L Hao , L X Gu , Q Guo , H Y He , Z Y Ouyang . A dry lunar mantle reservoir for young mare basalts of Chang’e-5. Nature, 2021, 600(7887): 49–53
https://doi.org/10.1038/s41586-021-04107-9
|
| 17 |
H C Tian , H Wang , Y Chen , W Yang , Q Zhou , C Zhang , H L Lin , C Huang , S T Wu , L H Jia , L Xu , D Zhang , X G Li , R Chang , Y H Yang , L W Xie , D P Zhang , G L Zhang , S H Yang , F Y Wu . Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane. Nature, 2021, 600(7887): 59–63
https://doi.org/10.1038/s41586-021-04119-5
|
| 18 |
Q L Li , Q Zhou , Y Liu , Z Y Xiao , Y T Lin , J H Li , H X Ma , G Q Tang , S Guo , X Tang , J Y Yuan , J Li , F Y Wu , Z Y Ouyang , C L Li , X H Li . Two-billion-year-old volcanism on the moon from Chang’e-5 basalts. Nature, 2021, 600(7887): 54–58
https://doi.org/10.1038/s41586-021-04100-2
|
| 19 |
N C Costes , W D Carrier , J K Mitchell , R F Scott . Apollo 11 soil mechanics investigation. Science, 1970, 167(3918): 739–741
https://doi.org/10.1126/science.167.3918.739
|
| 20 |
L Sibille, P K Carpenter, R A Schlagheck, R A French. Lunar Regolith Simulant Materials: Recommendations for Standardization, Production, and Usage. NASA Technical Reports NASA/TP-2006–214605, 2006
|
| 21 |
Y C Zheng , S J Wang , Z Y Ouyang , Y L Zou , J Z Liu , C L Li , X Y Li , J M Feng . CAS-1 lunar soil simulant. Advances in Space Research, 2009, 43(3): 448–454
https://doi.org/10.1016/j.asr.2008.07.006
|
| 22 |
K A Alshibli , A Hasan . Strength properties of JSC-1A lunar regolith simulant. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(5): 673–679
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000068
|
| 23 |
H Arslan, S Sture, S Batiste. Experimental simulation of tensile behavior of lunar soil simulant JSC-1. Materials Science and Engineering: A, 2008, 478(1–2): 201–207
https://doi.org/10.1016/j.msea.2007.05.113
|
| 24 |
N Kalapodis , G Kampas , O J Ktenidou . A review towards the design of extraterrestrial structures: from regolith to human outposts. Acta Astronautica, 2020, 175: 540–569
https://doi.org/10.1016/j.actaastro.2020.05.038
|
| 25 |
M Isachenkov , S Chugunov , I Akhatov , I Shishkovsky . Regolith-based additive manufacturing for sustainable development of lunar infrastructure—an overview. Acta Astronautica, 2021, 180: 650–678
https://doi.org/10.1016/j.actaastro.2021.01.005
|
| 26 |
B Khoshnevis, M P Bodiford, K H Burks, E Ethridge, D Tucker, W Kim, H Toutanji, M R Fiske. Lunar contour crafting—a novel technique for ISRU-based habitat development. In: Proceedings of the 43rd AIAA Aerospace Science Meeting and Exhibit. Reno: AIAA, 2005, AIAA 2005-538
https://doi.org/10.2514/6.2005-538
|
| 27 |
G Davis , C Montes , S Eklund . Preparation of lunar regolith based geopolymer cement under heat and vacuum. Advances in Space Research, 2017, 59(7): 1872–1885
https://doi.org/10.1016/j.asr.2017.01.024
|
| 28 |
K T Wang , P N Lemougna , Q Tang , W Li , X M Cui . Lunar regolith can allow the synthesis of cement materials with near-zero water consumption. Gondwana Research, 2017, 44: 1–6
https://doi.org/10.1016/j.gr.2016.11.001
|
| 29 |
H A Toutanji , S Evans , R N Grugel . Performance of lunar sulfur concrete in lunar environments. Construction & Building Materials, 2012, 29: 444–448
https://doi.org/10.1016/j.conbuildmat.2011.10.041
|
| 30 |
S Q Zhou , X Y Zhu , C H Lu , F Li . Synthesis and characterization of geopolymer from lunar regolith simulant based on natural volcanic scoria. Chinese Journal of Aeronautics, 2022, 35(1): 144–159
https://doi.org/10.1016/j.cja.2020.06.014
|
| 31 |
G Cesaretti , E Dini , X De Kestelier , V Colla , L Pambaguian . Building components for an outpost on the lunar soil by means of a novel 3D printing technology. Acta Astronautica, 2014, 93: 430–450
https://doi.org/10.1016/j.actaastro.2013.07.034
|
| 32 |
Balla V Krishna , L B Roberson , G W O’Connor , S Trigwell , S Bose , A Bandyopadhyay . First demonstration on direct laser fabrication of lunar regolith parts. Rapid Prototyping Journal, 2012, 18(6): 451–457
https://doi.org/10.1108/13552541211271992
|
| 33 |
H Zhao , L Meng , S Y Li , J H Zhu , S Q Yuan , W H Zhang . Development of lunar regolith composite and structure via laser-assisted sintering. Frontiers of Mechanical Engineering, 2022, 17(1): 6
https://doi.org/10.1007/s11465-021-0662-2
|
| 34 |
A Meurisse , A Makaya , C Willsch , M Sperl . Solar 3D printing of lunar regolith. Acta Astronautica, 2018, 152: 800–810
https://doi.org/10.1016/j.actaastro.2018.06.063
|
| 35 |
A Goulas , R J Friel . 3D printing with moondust. Rapid Prototyping Journal, 2016, 22(6): 864–870
https://doi.org/10.1108/RPJ-02-2015-0022
|
| 36 |
A Goulas , R A Harris , R J Friel . Additive manufacturing of physical assets by using ceramic multicomponent extra-terrestrial materials. Additive Manufacturing, 2016, 10: 36–42
https://doi.org/10.1016/j.addma.2016.02.002
|
| 37 |
A Goulas , J G P Binner , R A Harris , R J Friel . Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing. Applied Materials Today, 2017, 6: 54–61
https://doi.org/10.1016/j.apmt.2016.11.004
|
| 38 |
M Fateri , A Gebhardt . Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications. International Journal of Applied Ceramic Technology, 2015, 12(1): 46–52
https://doi.org/10.1111/ijac.12326
|
| 39 |
M Liu , W Z Tang , W Y Duan , S Li , R Dou , G Wang , B S Liu , L Wang . Digital light processing of lunar regolith structures with high mechanical properties. Ceramics International, 2019, 45(5): 5829–5836
https://doi.org/10.1016/j.ceramint.2018.12.049
|
| 40 |
A E Jakus , K D Koube , N R Geisendorfer , R N Shah . Robust and elastic lunar and martian structures from 3D-printed regolith inks. Scientific Reports, 2017, 7(1): 44931
https://doi.org/10.1038/srep44931
|
| 41 |
J X Liu, Y Cui, J P Yang, Z S Wu. Effect of basalt composition and mineral on high temperature melting process. Journal of Yanshan University, 2017, 41(4): 323–328 (in Chinese)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|