Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

Postal Subscription Code 80-975

2018 Impact Factor: 0.989

Front. Mech. Eng.    2024, Vol. 19 Issue (5) : 33    https://doi.org/10.1007/s11465-024-0810-6
Femtosecond laser-acoustic modeling and simulation for AlCu nanofilm nondestructive testing
Zhongyu WANG1, Jing MIN1, Jing HU1, Zehan WANG1, Xiuguo CHEN1,2, Zirong TANG1,2(), Shiyuan LIU1,2()
. State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
. Optics Valley Laboratory, Wuhan 430074, China
 Download: PDF(4260 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Photoacoustic detection has shown excellent performance in measuring thickness and detecting defects in metal nanofilms. However, existing research on ultrafast lasers mainly focuses on using picosecond or nanosecond lasers for large-scale material processing and measurement. The theoretical study of femtosecond laser sources for photoacoustic nondestructive testing (NDT) in nanoscale thin film materials receives much less emphasis, leading to a lack of a complete physical model that covers the entire process from excitation to measurement. In this study, we developed a comprehensive physical model that combines the two-temperature model with the acoustic wave generation and detection model. On the basis of the physical model, we established a simulation model to visualize the ultrafast laser-material interaction process. The damage threshold of the laser source is determined, and the effect of key parameters (laser fluence, pulse duration, and wavelength) for AlCu nanofilms on the femtosecond photoacoustic NDT process is discussed using numerical results from the finite element model. The numerical results under certain parameters show good agreement with the experimental results.

Keywords femtosecond photoacoustic      nondestructive testing      metal nanofilm      ultrafast laser-matter interaction      modeling and simulation      semiconductor manufacturing     
Corresponding Author(s): Zirong TANG,Shiyuan LIU   
Issue Date: 29 October 2024
 Cite this article:   
Zhongyu WANG,Jing MIN,Jing HU, et al. Femtosecond laser-acoustic modeling and simulation for AlCu nanofilm nondestructive testing[J]. Front. Mech. Eng., 2024, 19(5): 33.
 URL:  
https://academic.hep.com.cn/fme/EN/10.1007/s11465-024-0810-6
https://academic.hep.com.cn/fme/EN/Y2024/V19/I5/33
Fig.1  Schematic of the pump-probe technique.
Fig.2  Main framework of the simulation model.
Description Symbol Value Unit
Reference specific heat of the electron C0 135 J/m3·K
Thermal conductivity of the lattice κl 237 W/m·K
Surface reflectivity for a wavelength of 920 nm δ 0.907
Optical penetration depth for a wavelength of 920 nm zs 9.640 nm
Poisson’s ratio υ 0.350
Specific heat of the lattice Cl 2.42 × 106 J/m3·K
Electron–lattice coupling factor G 3.10 × 1017
Young’s modulus E 70 × 109 Pa
Shear modulus μ 26 × 109 Pa
Thermal expansion coefficient α 23.1 × 10−6 1/K
Density ρ 2.70 × 103 kg/m3
Tab.1  Thermophysical and optical properties of AlCu nanofilms
Fig.3  (a) Profile of the laser heat source in various depths. (b) Temporal and spatial distribution of the laser heat source. (c) Temporal and spatial distribution of the electron temperature. (d) Temporal and spatial distribution of the lattice temperature.
Fig.4  (a) Profile of longitude stress in the nanofilm at various times. (b) Temporal and spatial distribution of the strain in the nanofilm.
Fig.5  Temporal evolution of the change in surface reflectivity.
Fig.6  (a) Maximum effective stress in nanofilms under varying laser fluence. (b) Maximum electron and lattice temperatures in nanofilms under varying laser fluence.
Fig.7  (a) Electron and lattice heating time in nanofilms under varying laser fluence. (b) Maximum electron and lattice temperatures in nanofilms under varying laser fluence. (c) Maximum effective stress in nanofilms under varying laser fluence. (d) Signal intensity of δR under varying laser fluence.
Fig.8  (a) Surface reflectivity and absorptivity of AlCu nanofilms under varying laser wavelength. (b) Optical penetration depth of AlCu nanofilms under varying laser wavelength.
Fig.9  (a) Electron and lattice heating time in nanofilms under varying laser wavelength. (b) Maximum electron and lattice temperatures in nanofilms under varying laser wavelength. (c) Maximum effective stress in nanofilms under varying laser wavelength. (d) Signal intensity of δR under varying laser wavelength.
Fig.10  (a) Electron and lattice heating time in nanofilms under varying pulse duration. (b) Maximum electron and lattice temperatures in nanofilms under varying pulse duration. (c) Maximum effective stress in nanofilms under varying pulse duration. (d) Signal intensity of δR under varying laser pulse duration.
Fig.11  Comparison diagram of experimental and simulated signals.
Abbreviations
NDT Nondestructive testing
TTM Two-temperature model
Variables
B Bulk modulus
C0 Reference specific heat of the electron
Ce Electron specific heat
Cl Lattice specific heat
E Young’s modulus
G Electron–lattice coupling factor
J0 Peak fluence carried by laser pulse
k Free-space wave number
L Film thickness
n~ Complex refractive index
Q Volumetric laser heat source
RS Reflectivity of the sound pulse
r0 Reflection coefficient
Te Electron temperature
Tl Lattice temperature
t0 Transmission coefficient
tp Laser pulse duration
vl Longitude velocity of acoustic wave
ze Acoustic impedance of emergent medium
zi Acoustic impedance of incident medium
zs Optical penetration depth
α Thermal expansion coefficient
ε Strain
κe Electron thermal conductivity
κl Lattice thermal conductivity
δ Surface reflectivity
δR Change in reflectivity
λ Lamé constant
δij Kronecker delta function
ρ Density
σeff Effective stress
μ Shear modulus
υ Poisson’s ratio
  
1 C Thomsen, H T Grahn, H J Maris, J Tauc. Surface generation and detection of phonons by picosecond light pulses. Physical Review B, 1986, 34(6): 4129–4138
https://doi.org/10.1103/PhysRevB.34.4129
2 M Dubois, Jr Drake. T E. Evolution of industrial laser-ultrasonic systems for the inspection of composites. Nondestructive Testing and Evaluation, 2011, 26(3–4): 213–228
https://doi.org/10.1080/10589759.2011.573552
3 O Matsuda, M C Larciprete, R Li Voti, O B Wright. Fundamentals of picosecond laser ultrasonics. Ultrasonics, 2015, 56: 3–20
https://doi.org/10.1016/j.ultras.2014.06.005
4 S Manohar, D Razansky. Photoacoustics: a historical review. Advances in Optics and Photonics, 2016, 8(4): 586–617
https://doi.org/10.1364/AOP.8.000586
5 D H Hurley. Pump-probe laser ultrasonics: characterization of material microstructure. IEEE Nanotechnology Magazine, 2019, 13(3): 29–38
https://doi.org/10.1109/MNANO.2019.2904772
6 K X Zhang, D Chen, S Wang, Z J Yao, W Feng, S F Guo. Flexible and high-intensity photoacoustic transducer with PDMS/CSNPs nanocomposite for inspecting thick structure using laser ultrasonics. Composites Science and Technology, 2022, 228: 109667
https://doi.org/10.1016/j.compscitech.2022.109667
7 G A Antonelli, H J Maris, S G Malhotra, J M E Harper. Picosecond ultrasonics study of the vibrational modes of a nanostructure. Journal of Applied Physics, 2002, 91(5): 3261–3267
https://doi.org/10.1063/1.1435831
8 K Y Chou, C L Wu, C C Shen, J K Sheu, C K Sun. Terahertz photoacoustic generation using ultrathin nickel nanofilms. Journal of Physical Chemistry C, 2021, 125(5): 3134–3142
https://doi.org/10.1021/acs.jpcc.0c09303
9 G N Ji, W Y Zhu, X X Jia, S F Ji, D P Han, Z X Gao, H Liu, Y Wang, T Han. AuNP/Cu-TCPP(Fe) metal-organic framework nanofilm: a paper-based electrochemical sensor for non-invasive detection of lactate in sweat. Nanoscale, 2023, 15(10): 5023–5035
https://doi.org/10.1039/D2NR06342E
10 S Zheng, C G Wang, J X Li, W Q Wang, Q Yu, C W Wang, S Q Wang. Graphene oxide-based three-dimensional au nanofilm with high-density and controllable hotspots: a powerful film-type SERS tag for immunochromatographic analysis of multiple mycotoxins in complex samples. Chemical Engineering Journal, 2022, 448: 137760
https://doi.org/10.1016/j.cej.2022.137760
11 R A Rodriguez-Davila, R A Chapman, Z H Shamsi, S J Castillo, C D Young, M A Quevedo-López. Low temperature, highly stable ZnO thin-film transistors. Microelectronic Engineering, 2023, 279: 112063
https://doi.org/10.1016/j.mee.2023.112063
12 E G Gamaly. The physics of ultra-short laser interaction with solids at non-relativistic intensities. Physics Reports, 2011, 508(4–5): 91–243
https://doi.org/10.1016/j.physrep.2011.07.002
13 S I Anisimov, B L Kapeliovich, T L Perel’man. Electron emission from metal surfaces exposed to ultrashort laser pulses. Journal of Experimental and Theoretical Physics, 1974, 39(2): 375–377
14 L A Falkovsky, E G Mishchenko. Electron-lattice kinetics of metals heated by ultrashort laser pulses. Journal of Experimental and Theoretical Physics, 1999, 88(1): 84–88
https://doi.org/10.1134/1.558768
15 J K Chen, J E Beraun, L E Grimes, D Y Tzou. Modeling of femtosecond laser-induced non-equilibrium deformation in metal films. International Journal of Solids and Structures, 2002, 39(12): 3199–3216
https://doi.org/10.1016/S0020-7683(02)00242-1
16 M E Povarnitsyn, N E Andreev, E M Apfelbaum, T E Itina, K V Khishchenko, O F Kostenko, P R Levashov, M E Veysman. A wide-range model for simulation of pump-probe experiments with metals. Applied Surface Science, 2012, 258(23): 9480–9483
https://doi.org/10.1016/j.apsusc.2011.07.017
17 A Ancona, S Döring, C Jauregui, F Röser, J Limpert, S Nolte, A Tünnermann. Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers. Optics Letters, 2009, 34(21): 3304–3306
https://doi.org/10.1364/OL.34.003304
18 G Heise, D Trappendreher, F Ilchmann, R S Weiss, B Wolf, H Huber. Picosecond laser structuring of thin film platinum layers covered with tantalum pentoxide isolation. Journal of Applied Physics, 2012, 112(1): 013110
https://doi.org/10.1063/1.4733467
19 J Bonse, J Krüger. Structuring of thin films by ultrashort laser pulses. Applied Physics A, 2023, 129(1): 14
https://doi.org/10.1007/s00339-022-06229-x
20 Fatti N Del, C Voisin, D Christofilos, F Vallée, C Flytzanis. Acoustic vibration of metal films and nanoparticles. The Journal of Physical Chemistry A, 2000, 104(18): 4321–4326
https://doi.org/10.1021/jp994051y
21 S Yamaguchi, T Tahara. Coherent acoustic phonons in a thin gold film probed by femtosecond surface plasmon resonance. Journal of Raman Spectroscopy, 2008, 39(11): 1703–1706
https://doi.org/10.1002/jrs.2078
22 M Grossmann, M Schubert, C He, D Brick, E Scheer, M Hettich, V Gusev, T Dekorsy. Characterization of thin-film adhesion and phonon lifetimes in Al/Si membranes by picosecond ultrasonics. New Journal of Physics, 2017, 19(5): 053019
https://doi.org/10.1088/1367-2630/aa6d05
23 M Grossmann, M Klingele, P Scheel, O Ristow, M Hettich, C He, R Waitz, M F Schubert, A E Bruchhausen, V E Gusev, E Scheer, T Dekorsy. Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes. Physical Review B, 2013, 88(20): 205202
https://doi.org/10.1103/PhysRevB.88.205202
24 T Saito, O Matsuda, O B Wright. Picosecond acoustic phonon pulse generation in nickel and chromium. Physical Review B, 2003, 67(20): 205421
https://doi.org/10.1103/PhysRevB.67.205421
25 K E O'hara, X Y Hu, D G Cahill. Characterization of nanostructured metal films by picosecond acoustics and interferometry. Journal of Applied Physics, 2001, 90(9): 4852–4858
https://doi.org/10.1063/1.1406543
26 C J K Richardson, M J Ehrlich, J W Wagner. Interferometric detection of ultrafast thermoelastic transients in thin films: theory with supporting experiment. Journal of the Optical Society of America B: Optical Physics, 1999, 16(6): 1007–1015
https://doi.org/10.1364/JOSAB.16.001007
27 A Devos, C Lerouge. Evidence of laser-wavelength effect in picosecond ultrasonics: possible connection with interband transitions. Physical Review Letters, 2001, 86(12): 2669–2672
https://doi.org/10.1103/PhysRevLett.86.2669
28 S I Anisimov, B Rethfeld. Theory of ultrashort laser pulse interaction with a metal. In: KonovV I, Libenson M N, eds. Nonresonant Laser-Matter Interaction (NLMI-9). St. Petersburg: SPIE, 1997, 192–203
29 T Q Qiu, C L Tien. Femtosecond laser heating of multi-layer metals—I. Analysis. International Journal of Heat and Mass Transfer, 1994, 37(17): 2789–2797
https://doi.org/10.1016/0017-9310(94)90396-4
30 T Q Qiu, T Juhasz, C Suarez, W E Bron, C L Tien. Femtosecond laser heating of multi-layer metals—II. Experiments. International Journal of Heat and Mass Transfer, 1994, 37(17): 2799–2808
https://doi.org/10.1016/0017-9310(94)90397-2
31 O Matsuda, O B Wright. Reflection and transmission of light in multilayers perturbed by picosecond strain pulse propagation. Journal of the Optical Society of America B: Optical Physics, 2002, 19(12): 3028–3041
https://doi.org/10.1364/JOSAB.19.003028
32 Z B Lin, L V Zhigilei, V Celli. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Physical Review B, 2008, 77(7): 075133
https://doi.org/10.1103/PhysRevB.77.075133
33 J K Chen, J E Beraun, D Y Tzou. Thermomechanical response of metal films heated by ultrashort-pulsed lasers. Journal of Thermal Stresses, 2002, 25(6): 539–558
https://doi.org/10.1080/01495730290074289
34 C Kittle. Introduction to Solid State Physics. New York: John Wiles & Sons, 1967
35 J Y Zhang, X Zhang, G Liu, R H Wang, G J Zhang, J Sun. Length scale dependent yield strength and fatigue behavior of nanocrystalline Cu thin films. Materials Science and Engineering: A, 2011, 528(25–26): 7774–7780
https://doi.org/10.1016/j.msea.2011.06.083
36 K M McPeak, S V Jayanti, S J P Kress, S Meyer, S Iotti, A Rossinelli, D J Norris. Plasmonic films can easily be better: rules and recipes. ACS Photonics, 2015, 2(3): 326–333
https://doi.org/10.1021/ph5004237
[1] Shuncong ZHONG. Progress in terahertz nondestructive testing: A review[J]. Front. Mech. Eng., 2019, 14(3): 273-281.
[2] Jinyang ZHENG, Yue ZHANG, Dongsheng HOU, Yinkang QIN, Weican GUO, Chuck ZHANG, Jianfeng SHI. A review of nondestructive examination technology for polyethylene pipe in nuclear power plant[J]. Front. Mech. Eng., 2018, 13(4): 535-545.
[3] Yiliang ZHANG, Song YANG, Xuedong XU. Application of metal magnetic memory test in failure analysis and safety evaluation of vessels[J]. Front Mech Eng Chin, 2009, 4(1): 40-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed