Key Laboratory of Opto-Electronic Information and Technology, Ministry of Education, Institute of Modern Optics, Nankai University, Tianjin 300071, China
The current status of the fiber Bragg grating (FBG) sensor technology was reviewed. Owing to their salient advantages, including immunity to electromagnetic interference, lightweight, compact size, high sensitivity, large operation bandwidth, and ideal multiplexing capability, FBG sensors have attracted considerable interest in the past three decades. Among these sensing physical quantities, temperature and strain are the most widely investigated ones. In this paper, the sensing principle of FBG sensors was briefly introduced first. Then, we reviewed the status of research and applications of FBG sensors. As very important for industrial applications, multiplexing and networking of FBG sensors had been introduced briefly. Moreover, as a key technology, the wavelength interrogation methods were also reviewed carefully. Finally, we analyzed the problems encountered in engineering applications and gave a general review on the development of interrogation methods of FBG sensor.
Lee B. Review of the present status of optical fiber sensors. Optical Fiber Technology , 2003, 9(2): 57–79 doi: 10.1016/S1068-5200(02)00527-8
2
Rao Y J. In-fibre Bragg grating sensor. Measurement Science & Technology , 1997, 8(4): 355–375 doi: 10.1088/0957-0233/8/4/002
3
Othonos A. Fiber Bragg gratings. Review of Scientific Instruments , 1997, 68(12): 4309–4341 doi: 10.1063/1.1148392
4
Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology , 1997, 15(8): 1263–1276 doi: 10.1109/50.618320
5
Rao Y J. Fiber Bragg grating sensors: principles and applications. In: Grattan K T V, Meggitt B T eds)\. Optical Fiber Sensor Technology , 1998, 2: 355–389
6
Shu X W, Liu Y, Zhao D H, Gwandu B, Floreani F, Zhang L, Bennion I. Dependence of temperature and strain coefficients on fiber grating type and its application to simultaneous temperature and strain measurement. Optics Letters , 2002, 27(9): 701–703 doi: 10.1364/OL.27.000701 pmid:18007904
7
Kersey A D, Davis M A, Patrick H J, LeBlanc M, Koo K P, Askins C G, Putnam M A, Friebele E J. Fiber grating sensors. Journal of Lightwave Technology , 1997, 15(8): 1442–1463 doi: 10.1109/50.618377
8
Xu M G, Archambault J L, Reekie L, Dakin J P. Thermally-compensated bending gauge using surface-mounted fiber gratings. International Journal of Optoelectron , 1994, 3(9): 281–283 doi: 10.1049/ip-opt:19941419
9
Dong X Y, Liu Y Q, Liu Z G, Dong X Y. Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor. Optics Communications , 2001, 192(3-6): 213–217 doi: 10.1016/S0030-4018(01)01157-9
10
Patrick H J, Williams G M, Kersey A D, Pedrazzani J R, Vengsarkar A M. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. IEEE Photonics Technology Letters , 1996, 8(9): 1223–1225 doi: 10.1109/68.531843
11
Guan B O, Tam H Y, Tao X M, Dong X Y. Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating. IEEE Photonics Technology Letters , 2000, 12(6): 675–677 doi: 10.1109/68.849081
12
Dong X Y, Yang X F, Zhao C L, Ding L, Shum P, Ngo N Q. A novel temperature-insensitive fiber Bragg grating sensor. Smart Materials and Structures , 2005, 14(2): N7–10 doi: 10.1088/0964-1726/14/2/N01
13
Song M, Lee B, Lee S B, Choi S S. Interferometric temperature-insensitive strain measurement with different-diameter fiber Bragg gratings. Optics Letters , 1997, 22(11): 790–792 doi: 10.1364/OL.22.000790 pmid:18185663
14
Frazao O, Carvalho J P, Ferreira L A, Marques L, Araujo F M, Santos J L. Discrimination of strain and temperature using Bragg grating in microstrctured and standard optical fibers. Measurement Science and Technology , 2005, 16(10): 2109–2113 doi: 10.1088/0957-0233/16/10/028
15
Chuang K C, Ma C C. Pointwise fiber Bragg grating displacement sensor system for dynamic measurements. Applied Optics , 2008, 47(20): 3561–3567 doi: 10.1364/AO.47.003561 pmid:18617972
16
Niewczas P, Dziuda L, Fusie G, McDonald J R. Temperature compensation for a piezoelectric fiber-optic voltage sensor. In: Proceedings of IMTC 2006 - Instrumentation and Measurement Technology Conference . 2006, 1994–1998
17
Fusick G, Niewczas P, Dziuda L, McDonald J R. Hysteresis compensation for a piezoelectric fiber-optic voltage sensor. Optical Engineering , 2005, 44(11): 345–348
18
Liu B, Niu W, Yang Y, Luo J, Cao Y, Kai G, Zhang W, Dong X. A novel fiber Bragg grating accelerometer. Chinese Journal of Scientific Instrument , 2006, 27(1): 42–44 (in Chinese)
19
Bao H, Dong X, Shao L Y, Zhao C L, Chan C C, Shum P. Temperature-insensitive 2-D pendulum clinometer using two fiber Bragg gratings. IEEE Photonics Technology Letters , 2010, 22(12): 863–865 doi: 10.1109/LPT.2010.2046630
20
Li H M, Gao H W, Liu B, Luo J H, Kai G Y, Yuan S Z, Dong X Y. A novel fiber Bragg grating flowmeter. Chinese Journal of Sensors and Actuators , 2006, 19(4): 1195–1197 (in Chinese)
21
Sato H, Watanabe K L. Experimental study on the use of a vortex whistle as a flowmeter. Instrumentation and Measurement , 2000, 49(1): 200–205 doi: 10.1109/19.836334
22
Lee K O, Chiang K S, Chen Z H. Temperature-insensitive fiber-Bragg-grating-based vibration sensor. Optical Engineering , 2001, 40(11): 2582–2585 doi: 10.1117/1.1412622
23
Takahashi N, Yoshimura K, Takahashi S. Detection of ultrasonic mechanical vibration of a solid using fiber Bragg grating. Japanese Journal of Applied Physics , 2000, 39: 3134–3138
24
Zhang W G, Liu Y G, Kai G Y, Zhao Q D, Yuan S Z, Dong X Y. A novel independent tuning technology of center wavelength and bandwidth of fiber Bragg grating. Optics Communications , 2003, 216(4-6): 343–350
25
Gwandu B A L, Zhang L, Chisholm K, Shu X, Bennion I. Compact FBG array structure for high spatial resolution distributed strain sensing. Measurement Science & Technology , 2001, 12(7): 918–921
26
Vohra S T, Todd M D, Johnson G A, Chang C C, Danver B A. Fiber Bragg grating sensor system for civil structure monitoring: applications and field tests. Proceedings of SPIE , 1999, 3746: 32–37
27
Henderson P J, Webb D J, Jackson D A, Zhang L, Bennion I. Highly-multiplexed grating-sensors for temperature-referenced quasi-static measurements of strain in concrete bridges. Proceedings of SPIE , 1999, 3746: 320–323
28
Weis R S, Kersey A D, Berkoff T A. A four-element fiber grating sensor array with phase-sensitive detection. IEEE Photonics Technology Letters , 1994, 6(12): 1469–1472 doi: 10.1109/68.392208
Andreas O, Kyriacos K. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Boston , MA: Artech House, 1999
31
Ashoori R, Gebrmichal Y M, Xiao S, Kemp J, Grattan K T V, Palmer A W. Time domain multiplexing for Bragg grating strain measurement sensor network. Proceedings of SPIE , 1998, 3746: 308–311
32
Yao Y, Yi B S, Xiao J S. Research progress in wavelength demodulation technology of fiber Bragg grating sensors. Optical Communication Technology , 2007, 31(11): 41–45 (in Chinese)
33
Koo K P, Kersey A D. Bragg grating based laser sensor system with interferometric interrogation and wavelength division multiplexing. Journal of Lightwave Technology , 1995, 13(7): 1243–1249 doi: 10.1109/50.400692
34
Kersey A D, Berkoff T A, Morey W W. Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter. Optics Letters , 1993, 18(16): 1370–1372 doi: 10.1364/OL.18.001370 pmid:19823386
35
Kim H S, Yun S H, Kwang I K, Kim B Y. All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile. Optics Letters , 1997, 22(19): 1476–1478 doi: 10.1364/OL.22.001476 pmid:18188273
36
Ball G A, Morey W W, Cheo P K. Fiber laser source/analyzer for Bragg grating sensor array interrogation. Journal of Lightwave Technology , 1994, 12(4): 700–703 doi: 10.1109/50.285367
37
Chen G, Xiao H, Huang Y, Zhang Y, Zhou Z. Simultaneous strain and temperature measurement using long-period fiber grating sensors. Proceedings of SPIE , 2010, 7649: 343–346
38
Kersey A D, Morey W W. Multiplexed Bragg grating fibre-laser strain-sensor system with mode-locked interrogation. Electronics Letters , 1993, 29(1): 112–114 doi: 10.1049/el:19930073
39
Yun S H, Richardson D J, Kim B Y. Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser. Optics Letters , 1998, 23(11): 843–845 doi: 10.1364/OL.23.000843 pmid:18087360
40
Jáuregui C, Quintela A, López-Higuera J M. Interrogation unit for fiber Bragg grating sensors that uses a slanted fiber grating. Optics Letters , 2004, 29(7): 676–678 15072355 doi: 10.1364/OL.29.000676
41
Xia H Y, Wang C, Sebastien B, Yao J P. Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion. Journal of Lightwave Technology , 2010, 28(3): 224–261
42
Jung E J, Kim C S, Jeong M Y, Kim M K, Jeon M Y, Jung W, Chen Z P. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser. Optics Express , 2008, 16(21): 16552–16560 pmid:18852764
43
Gagliardi G, Salza M, Ferraro P, De Natale P. Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation. Optics Express , 2005, 13(7): 2377–2384 doi: 10.1364/OPEX.13.002377 pmid:19495128
44
Sano Y, Yoshino T. Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors. Journal of Lightwave Technology , 2003, 21(1): 132–139 doi: 10.1109/JLT.2003.808620
45
Song M, Yin S, Ruffin P B. Fiber Bragg grating strain sensor demodulation with quadrature sampling of a mach-zehnder interferometer. Applied Optics , 2000, 39(7): 1106–1111 doi: 10.1364/AO.39.001106 pmid:18337990