Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

邮发代号 80-976

Frontiers of Optoelectronics  2014, Vol. 7 Issue (3): 385-392   https://doi.org/10.1007/s12200-014-0421-7
  本期目录
Absorption density control in waveguide photodiode---analysis, design, and demonstration
Dingbo CHEN(),Jeffery BLOCH,Rui WANG,Paul K. L. YU
Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
 全文: PDF(1479 KB)   HTML
Abstract

A modal analysis is conducted for analyzing the absorption profile of high power waveguide photodiodes designed for analog optical link. The excitation of guided modes with large filling factor in the absorber is identified as a limiting factor for the performance of waveguide photodiodes at high optical power, including power handling capability, and bandwidth-efficiency product. A waveguide photodiode design, which spatially separates the input waveguide from the absorber in the lateral direction, is analyzed and experimentally demonstrated to suppress the excitation of mode with large filling factor. Photocurrent>60 mA under -4 V bias is measured, with 0.80 A/W responsivity. This design illustrates that high power handling capability can be achieved without compromising the bandwidth-efficiency product.

Key wordsphotodiode    waveguide    thermal failure    high power    mode excitation
收稿日期: 2014-02-18      出版日期: 2014-09-09
Corresponding Author(s): Dingbo CHEN   
 引用本文:   
. [J]. Frontiers of Optoelectronics, 2014, 7(3): 385-392.
Dingbo CHEN,Jeffery BLOCH,Rui WANG,Paul K. L. YU. Absorption density control in waveguide photodiode---analysis, design, and demonstration. Front. Optoelectron., 2014, 7(3): 385-392.
 链接本文:  
https://academic.hep.com.cn/foe/CN/10.1007/s12200-014-0421-7
https://academic.hep.com.cn/foe/CN/Y2014/V7/I3/385
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
modeexcitation coefficient χfilling factor Г
0th0.340.010
1st0.510.011
2nd0.430.050
3rd0.150.040
4th0.110.080
5th0.030.070
large Г mode0.0020.240
Tab.1  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
1 Chang W S C. F<?Pub Caret1?>undamentals of Guided-Wave Optoelectronic Devices. Cambridge: Cambridge University Press, 2010
2 Williams K J, Esman R D, Dagenais M. Nonlinearities in pin microwave photodetectors. Journal of Lightwave Technology, 1996, 14(1): 84-96
doi: 10.1109/50.476141
3 Lasaosa D, Shi J W, Pasquariello D, Gan K G, Tien M C, Chang H H, Chu S W, Sun C K, Chiu Y J, Bowers J E. Traveling-wave photodetectors with high power-bandwidth and gain-bandwidth product performance. Quantum Electronics, 2004, 10(4): 728-741
4 Demiguel S, Giraudet L. Joulaud L, Decobert J, Blache F, Coupe V, Jorge F, Rossiaux P P, Boucherez E, Achouche M, Devaux F. Evanescently coupled photodiodes integrating a double-stage taper for 40-Gb/s applications-compared performance with side-illuminated photodiodes. Journal of Lightwave Technology, 2002, 20(12): 2004-2014
doi: 10.1109/JLT.2002.806752
5 Michel N, Magnin V, Harari J, Marceaux A, Parillaud O, Decoster D, Vodjdani N. High-power evanescently-coupled waveguide photodiodes. IEE Proceedings-Optoelectronics, 2006, 153(4): 199-204
doi: 10.1049/ip-opt:20050032
6 Jiang H, Yu P K L. High power waveguide integrated photodiode with distributed absorption. In: Proceedings of IEEE MTT-S Digest. 2000, 2: 679-682
7 Liao T S, Mages P, Yu P K L. Investigation of the high power integrated uni-traveling carrier and waveguide integrated photodiode. In: Proceedings of IEEE MTT-S Digest. 2003, 1: 155-158
8 Jiang H, Yu P K L. Waveguide integrated photodiode for analog fiber-optics links. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(12): 2604-2610
doi: 10.1109/22.899019
9 Kato K, Yoshida J. Ultrawide-bandwidth 1.55 μm waveguide p-i-n photodiode. Proceedings of the Society for Photo-Instrumentation Engineers, 1994, 2149: 312-319
doi: 10.1117/12.175271
10 Draa M N, Bloch J, Chen D B, Scott D C, Chen N, Chen S B, Yu X C, Chang W S C, Yu P K L. Novel directional coupled waveguide photodiode-concept and preliminary results. Optics Express, 2010, 18(17): 17729-17735
doi: 10.1364/OE.18.017729 pmid: 20721159
11 Zhang Y X, Liao Z Y, Zhao L J, Zhu H L, Pan J Q, Wang W. A high-efficiency high-power evanescently coupled UTC-photodiode. Journal of Semiconductors, 2009, 30(4): 1-4
12 Klamkin J, Ramaswamy A, Johansson L A, Chou H F, Sysak M N, Raring J W, Parthasarathy N, DenBaars S P, Bowers J E, Coldren L A. High output saturation and high-linearity uni-traveling-carrier waveguide photodiodes. IEEE Photonics Technology Letters, 2007, 19(3): 149-151
doi: 10.1109/LPT.2006.890101
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed