Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

邮发代号 80-976

Frontiers of Optoelectronics  2016, Vol. 9 Issue (1): 106-111   https://doi.org/10.1007/s12200-015-0472-4
  本期目录
Dispersion of double-slot microring resonators in optical buffer
Chuan WANG,Xiaoying LIU(),Peng ZHOU,Peng LI,Jia DU
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 全文: PDF(855 KB)   HTML
Abstract

In the optical packet switching network, optical buffer is an important device. Microring resonator optical buffers provide good delay performance and flexibility in design. By cascading multiple microring resonators, higher delay-bandwidth product is obtained, but the requirements of high integration and low dispersion are hard to satisfy simultaneously. Double-slot waveguide was proposed to construct highly integrated racetrack microring resonators in this study. Based on dispersion analysis of the thickness of each layer of a waveguide, the structure of waveguide was optimized to reach flat and low dispersion. Average dispersions of straight and 3 μm bend waveguides were 5.1 ps/(nm?km) and 4.4 ps/(nm?km), respectively. Besides, the additional loss from coupling was greatly reduced when applying proper relative displacement between straight and bend waveguides. Theoretical and design basis provided in this paper will help to develop multi-microring optical buffers in the future.

Key wordsmicroring    optical buffer    double-slot waveguide
收稿日期: 2014-07-16      出版日期: 2016-03-18
Corresponding Author(s): Xiaoying LIU   
 引用本文:   
. [J]. Frontiers of Optoelectronics, 2016, 9(1): 106-111.
Chuan WANG,Xiaoying LIU,Peng ZHOU,Peng LI,Jia DU. Dispersion of double-slot microring resonators in optical buffer. Front. Optoelectron., 2016, 9(1): 106-111.
 链接本文:  
https://academic.hep.com.cn/foe/CN/10.1007/s12200-015-0472-4
https://academic.hep.com.cn/foe/CN/Y2016/V9/I1/106
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
1 Willner A E, Zhang L, Yang J Y. Micro-resonator devices and optical broadband access application. In: Proceedings of the International Society for Optics and Photonics, (OPTO). 2011, 795803
2 Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon microring resonators. Laser & Photonics Reviews, 2012, 6(1): 47–73
https://doi.org/10.1002/lpor.201100017
3 Xia F, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nature Photonics, 2007, 1(1): 65–71
https://doi.org/10.1038/nphoton.2006.42
4 Cao T T, Zhang L B, Fei Y H, Cao Y M, Lei X, Chen S W. Design of a high-speed silicon electro-optical modulator based on an add-drop micro-ring resonator. Acta Physica Sinica, 2013, 62(19): 194210 (in Chinese)
5 Zhang X, Li Z Q, Tong K. A cross bus single microring electro-optical switch with U bend waveguide. Acta Physica Sinica, 2014, 63(9): 094207 (in Chinese)
6 Ren G H, Chen S W, Cao T T. Theoretical analysis of a thermal-optical tunable filter based on Vernier effect of cascade microring resonators. Acta Physica Sinica, 2012, 61(3): 034215 (in Chinese)
7 Fontaine N K, Yang J, Pan Z, Chu S, Chen W, Little B E, Ben Yoo S. Continuously tunable optical buffering at 40 Gb/s for optical packet switching networks. Journal of Lightwave Technology, 2008, 26(23): 3776–3783
https://doi.org/10.1109/JLT.2008.2004793
8 Shinobu F, Ishikura N, Arita Y, Tamanuki T, Baba T. Continuously tunable slow-light device consisting of heater-controlled silicon microring array. Optics Express, 2011, 19(14): 13557–13564
https://doi.org/10.1364/OE.19.013557 pmid: 21747511
9 Morichetti F, Melloni A, Breda A, Canciamilla A, Ferrari C, Martinelli M. A reconfigurable architecture for continuously variable optical slow-wave delay lines. Optics Express, 2007, 15(25): 17273–17282
https://doi.org/10.1364/OE.15.017273 pmid: 19551021
10 Boeck R, Chrostowski L, Jaeger N A. Thermally tunable quadruple Vernier racetrack resonators. Optics Letters, 2013, 38(14): 2440–2442
https://doi.org/10.1364/OL.38.002440 pmid: 23939074
11 Khurgin J B. Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis. Journal of the Optical Society of America B, 2005, 22(5): 1062–1074
https://doi.org/10.1364/JOSAB.22.001062
12 Poon J K, Scheuer J, Xu Y, Yariv A. Designing coupled-resonator optical waveguide delay lines. Journal of the Optical Society of America B, 2004, 21(9): 1665–1673
https://doi.org/10.1364/JOSAB.21.001665
13 Poon J K, Zhu L, DeRose G A, Yariv A. Transmission and group delay of microring coupled-resonator optical waveguides. Optics Letters, 2006, 31(4): 456–458
https://doi.org/10.1364/OL.31.000456 pmid: 16496885
14 Cooper M L, Gupta G, Schneider M A, Green W M, Assefa S, Xia F, Gifford D K, Mookherjea S. Waveguide dispersion effects in silicon-on-insulator coupled-resonator optical waveguides. Optics Letters, 2010, 35(18): 3030–3032
https://doi.org/10.1364/OL.35.003030 pmid: 20847768
15 Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
https://doi.org/10.1364/OL.29.001209 pmid: 15209249
16 Sun R, Dong P, Feng N N, Hong C Y, Michel J, Lipson M, Kimerling L. Horizontal single and multiple slot waveguides: optical transmission at λ= 1550 nm. Optics Express, 2007, 15(26): 17967–17972
https://doi.org/10.1364/OE.15.017967 pmid: 19551093
17 Yu P, Qi B, Jiang X, Wang M, Yang J. Ultrasmall-V high-Q photonic crystal nanobeam microcavities based on slot and hollow-core waveguides. Optics Letters, 2011, 36(8): 1314–1316
https://doi.org/10.1364/OL.36.001314 pmid: 21499341
18 Zhang L, Yue Y, Xiao-Li Y, Wang J, Beausoleil R G, Willner A E. Flat and low dispersion in highly nonlinear slot waveguides. Optics Express, 2010, 18(12): 13187–13193
https://doi.org/10.1364/OE.18.013187 pmid: 20588447
19 Bao C, Yan Y, Zhang L, Yue Y, Willner A E. Tailoring of low chromatic dispersion over a broadband in silicon waveguides using a double-slot design. In: Proceedings of CLEO: QELS_Fundamental Science. 2013, JTu4A.53
20 Yan Y, Matsko A, Bao C, Maleki L, Willner A E. Increasing the spectral bandwidth of optical frequency comb generation in a microring resonator using dispersion tailoring slotted waveguide. In: Proceedings of IEEE Photonics Conference (IPC). 2013, 230–231
21 Zhu M, Liu H, Li X, Huang N, Sun Q, Wen J, Wang Z. Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides. Optics Express, 2012, 20(14): 15899–15907
https://doi.org/10.1364/OE.20.015899 pmid: 22772280
22 Sanchis P, Blasco J, Martínez A, Martí J. Design of silicon-based slot waveguide configurations for optimum nonlinear performance. Journal of Lightwave Technology, 2007, 25(5): 1298–1305
https://doi.org/10.1109/JLT.2007.893909
23 Keivani H, Kargar A. Bending efficiency of bent multiple-slot waveguides. Chinese Physics Letters, 2009, 26(12): 124204
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed