Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

邮发代号 80-976

Frontiers of Optoelectronics  2016, Vol. 9 Issue (4): 571-577   https://doi.org/10.1007/s12200-016-0495-5
  本期目录
Low dispersion broadband integrated double-slot microring resonators optical buffer
Chuan WANG,Xiaoying LIU(),Minming ZHANG,Peng ZHOU
School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
 全文: PDF(241 KB)   HTML
Abstract

Microring resonator optical buffer is attractive in high-speed optical network system, but ordinary microring resonator use strip waveguide as its basic light guide medium, which cannot provide small footprint, low dispersion and high delay-bandwidth product (DBP) simultaneously. Double-slot waveguide structure was first proposed to construct racetrack-microring resonators. It was found that cascading multiple microrings can increase the delay-bandwidth and lower the dispersion of the resonators by optimizing the structure parameters. Optical buffer cascaded by 8 microrings with flat bandwidth of 20 GHz provided the delay of 150 ps and the dispersion of ~107 ps/nm over 1530−1630 nm, and the footprint of each microring was about 51. This study can provide design methods and theoretical basis support for practical application.

Key wordsoptical buffer    microring    resonator    delay    slot    waveguide    dispersion
收稿日期: 2014-11-27      出版日期: 2016-11-29
Corresponding Author(s): Xiaoying LIU   
 引用本文:   
. [J]. Frontiers of Optoelectronics, 2016, 9(4): 571-577.
Chuan WANG,Xiaoying LIU,Minming ZHANG,Peng ZHOU. Low dispersion broadband integrated double-slot microring resonators optical buffer. Front. Optoelectron., 2016, 9(4): 571-577.
 链接本文:  
https://academic.hep.com.cn/foe/CN/10.1007/s12200-016-0495-5
https://academic.hep.com.cn/foe/CN/Y2016/V9/I4/571
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
ring index
t

lc/μm
R / μm
L/dB

α

D/ps?nm-1
1 0.9547 2.360 2.673 0.189 0.957 -1.56 ´10−6
2 0.9538 2.354 2.773 0.184 0.958 -1.08 ´10−6
3 0.9531 2.350 2.872 0.179 0.959 -6.13 ´10−7
4 0.9528 2.348 2.970 0.175 0.960 -1.47 ´10−7
5 0.9527 2.347 3.069 0.172 0.961 3.11 ´10−7
6 0.9529 2.348 3.166 0.169 0.962 7.56 ´10−7
7 0.9533 2.351 3.263 0.166 0.962 1.19 ´10−6
8 0.9543 2.356 3.359 0.164 0.963 1.60 ´10−6
Tab.1  
1 Melloni A, Morichetti F. The long march of slow photonics. Nature Photonics, 2009, 3(3): 119–119
https://doi.org/10.1038/nphoton.2009.8
2 Sheng X, Dong X, Zhang X, Peng C. Advances in the research on all-optical buffers. Study on Optical Communications, 2012, (6): 52–55
3 Dutta M K, Chaubey V K. Modeling and performance analysis of optical packet switching network using fiber delay lines. In: Proceedings of India Conference. 2011, 1–4
4 Melloni A, Canciamilla A, Ferrari C, Morichetti F, O'Faolain L, Krauss T, De La Rue R, Samarelli A, Sorel M. Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison. IEEE Photonics Journal, 2010, 2(2): 181–194
https://doi.org/10.1109/JPHOT.2010.2044989
5 Xia F, Sekaric L, Vlasov Y. Ultracompact optical buffers on a silicon chip. Nature Photonics, 2007, 1(1): 65–71
https://doi.org/10.1038/nphoton.2006.42
6 Morichetti F, Ferrari C, Canciamilla A, Melloni A. The first decade of coupled resonator optical waveguides: bringing slow light to applications. Laser & Photonics Reviews, 2012, 6(1): 74–96
https://doi.org/10.1002/lpor.201100018
7 Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Selvaraja S K, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon microring resonators. Laser & Photonics Reviews, 2012, 6(1): 47–73
https://doi.org/10.1002/lpor.201100017
8 Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
https://doi.org/10.1364/OL.29.001209 pmid: 15209249
9 Jágerská J, Thomas N L, Houdré R, Bolten J, Moormann C, Wahlbrink T, Ctyroký J, Waldow M, Först M. Dispersion properties of silicon nanophotonic waveguides investigated with Fourier optics. Optics Letters, 2007, 32(18): 2723–2725
https://doi.org/10.1364/OL.32.002723 pmid: 17873948
10 Di Falco A, O’Faolain L, Krauss T F. Dispersion control and slow light in slotted photonic crystal waveguides. Applied Physics Letters, 2008, 92(8): 083501
https://doi.org/10.1063/1.2885072
11 Zheng Z, Iqbal M, Liu J. Dispersion characteristics of SOI-based slot optical waveguides. Optics Communications, 2008, 281(20): 5151–5155
https://doi.org/10.1016/j.optcom.2008.07.003
12 Willner A E, Zhang L, Yue Y. Tailoring of dispersion and nonlinear properties of integrated silicon waveguides for signal processing applications. Semiconductor Science and Technology, 2011, 26(1): 014044
https://doi.org/10.1088/0268-1242/26/1/014044
13 Zhang L, Yue Y, Beausoleil R G, Willner A E. Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators. Optics Express, 2011, 19(9): 8102–8107
https://doi.org/10.1364/OE.19.008102 pmid: 21643060
14 Bao C, Yan Y, Zhang L, Yue Y, Willner A E. Tailoring of low chromatic dispersion over a broadband in silicon waveguides using a double-slot design. In: Proceedings of Conference on Laser and Electro-Optics. 2013, JTu4A.53-1–JTu4A.53-2
15 Yan Y, Matsko A, Bao C, Maleki L, Willner A E. Increasing the spectral bandwidth of optical frequency comb generation in a microring resonator using dispersion tailoring slotted waveguide. In: Proceedings of IEEE Photonics Conference. 2013, 230–231
16 Bao C, Yan Y, Zhang L, Yue Y, Ahmed N, Agarwal A M, Kimerling L C, Michel J, Willner A E. Increased bandwidth with flattened and low dispersion in a horizontal double-slot silicon waveguide. Journal of the Optical Society of America B, Optical Physics, 2015, 32(1): 26–30
https://doi.org/10.1364/JOSAB.32.000026
17 Sun R, Dong P, Feng N N, Hong C Y, Michel J, Lipson M, Kimerling L. Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm. Optics Express, 2007, 15(26): 17967–17972 PMID:19551093
https://doi.org/10.1364/OE.15.017967
18 Prabhu A M, Tsay A, Han Z, Van V. Extreme miniaturization of silicon add–drop microring filters for VLSI photonics applications. IEEE Photonics Journal, 2010, 2(3): 436–444
https://doi.org/10.1109/JPHOT.2010.2049831
19 Selvaraja S K, Jaenen P, Bogaerts W, Van Thourhout D, Dumon P, Baets R. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. Journal of Lightwave Technology, 2009, 27(18): 4076–4083
https://doi.org/10.1109/JLT.2009.2022282
20 Selvaraja S K, Bogaerts W, Dumon P, Van Thourhout D, Baets R. Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 316–324
https://doi.org/10.1109/JSTQE.2009.2026550
21 Selvaraja S K, De Vos K, Bogaerts W, Bienstman P, Van Thourhout D, Baets R. Effect of device density on the uniformity of silicon nano-photonic waveguide devices. In: Proceedings of IEEE LEOS Annual Meeting Conference. 2009, 311–312
22 Xiao S, Khan M H, Shen H, Qi M. Compact silicon microring resonators with ultra-low propagation loss in the C band. Optics Express, 2007, 15(22): 14467–14475
https://doi.org/10.1364/OE.15.014467 pmid: 19550724
23 Bogaerts W, Selvaraja S K, Dumon P, Brouckaert J, De Vos K, Van Thourhout D, Baets R. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 33–44
https://doi.org/10.1109/JSTQE.2009.2039680
24 Atabaki A H, Askari M, Eftekhar A A, Adibi A. Accurate post-fabrication trimming of silicon resonators. In: Proceedings of IEEE International Conference on Group IV Photonics GFP. 2012, 42–44
25 Boeck R, Chrostowski L, Jaeger N A. Thermally tunable quadruple Vernier racetrack resonators. Optics Letters, 2013, 38(14): 2440–2442
https://doi.org/10.1364/OL.38.002440 pmid: 23939074
26 Shinobu F, Ishikura N, Arita Y, Tamanuki T, Baba T. Continuously tunable slow-light device consisting of heater-controlled silicon microring array. Optics Express, 2011, 19(14): 13557–13564
https://doi.org/10.1364/OE.19.013557 pmid: 21747511
27 Fontaine N K, Yang J, Pan Z, Chu S, Chen W, Little B E, Ben Yoo S J. Continuously tunable optical buffering at 40 Gb/s for optical packet switching networks. Journal of Lightwave Technology, 2008, 26(23): 3776–3783
https://doi.org/10.1109/JLT.2008.2004793
28 Zhu M, Liu H, Li X, Huang N, Sun Q, Wen J, Wang Z. Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides. Optics Express, 2012, 20(14): 15899–15907
https://doi.org/10.1364/OE.20.015899 pmid: 22772280
29 Subbaraman H, Ling T, Jiang Y, Chen M Y, Cao P, Chen R T. Design of a broadband highly dispersive pure silica photonic crystal fiber. Applied Optics, 2007, 46(16): 3263–3268
https://doi.org/10.1364/AO.46.003263 pmid: 17514284
30 Yoo H G, Fu Y, Riley D, Shin J H, Fauchet P M. Birefringence and optical power confinement in horizontal multi-slot waveguides made of Si and SiO2. Optics Express, 2008, 16(12): 8623–8628
https://doi.org/10.1364/OE.16.008623 pmid: 18545575
31 Yang S H, Cooper M L, Bandaru P R, Mookherjea S. Giant birefringence in multi-slotted silicon nanophotonic waveguides. Optics Express, 2008, 16(11): 8306–8316
https://doi.org/10.1364/OE.16.008306 pmid: 18545544
32 Ding R, Baehr-Jones T, Kim W, Boyko B, Bojko R, Spott A, Pomerene A, Hill C, Reinhardt W, Hochberg M. Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator. Applied Physics Letters, 2011, 98(23): 233303
https://doi.org/10.1063/1.3597798
33 Uranus H P, Hoekstra H J W M. Modeling of loss-induced superluminal and negative group velocity in two-port ring-resonator circuits. Journal of Lightwave Technology, 2007, 25(9): 2376–2384
https://doi.org/10.1109/JLT.2007.901524
34 Lou F. Theoretical study on microring resonators based all optical buffers. Dissertation for the Doctoral Degree.Wuhan: Huazhong University of Science and Technology, 2011, 21–27
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed