Microring resonator optical buffer is attractive in high-speed optical network system, but ordinary microring resonator use strip waveguide as its basic light guide medium, which cannot provide small footprint, low dispersion and high delay-bandwidth product (DBP) simultaneously. Double-slot waveguide structure was first proposed to construct racetrack-microring resonators. It was found that cascading multiple microrings can increase the delay-bandwidth and lower the dispersion of the resonators by optimizing the structure parameters. Optical buffer cascaded by 8 microrings with flat bandwidth of 20 GHz provided the delay of 150 ps and the dispersion of ~ ps/nm over 1530−1630 nm, and the footprint of each microring was about 51. This study can provide design methods and theoretical basis support for practical application.
Sheng X, Dong X, Zhang X, Peng C. Advances in the research on all-optical buffers. Study on Optical Communications, 2012, (6): 52–55
3
Dutta M K, Chaubey V K. Modeling and performance analysis of optical packet switching network using fiber delay lines. In: Proceedings of India Conference. 2011, 1–4
4
Melloni A, Canciamilla A, Ferrari C, Morichetti F, O'Faolain L, Krauss T, De La Rue R, Samarelli A, Sorel M. Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison. IEEE Photonics Journal, 2010, 2(2): 181–194
https://doi.org/10.1109/JPHOT.2010.2044989
Morichetti F, Ferrari C, Canciamilla A, Melloni A. The first decade of coupled resonator optical waveguides: bringing slow light to applications. Laser & Photonics Reviews, 2012, 6(1): 74–96
https://doi.org/10.1002/lpor.201100018
7
Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Selvaraja S K, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon microring resonators. Laser & Photonics Reviews, 2012, 6(1): 47–73
https://doi.org/10.1002/lpor.201100017
8
Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
https://doi.org/10.1364/OL.29.001209
pmid: 15209249
9
Jágerská J, Thomas N L, Houdré R, Bolten J, Moormann C, Wahlbrink T, Ctyroký J, Waldow M, Först M. Dispersion properties of silicon nanophotonic waveguides investigated with Fourier optics. Optics Letters, 2007, 32(18): 2723–2725
https://doi.org/10.1364/OL.32.002723
pmid: 17873948
10
Di Falco A, O’Faolain L, Krauss T F. Dispersion control and slow light in slotted photonic crystal waveguides. Applied Physics Letters, 2008, 92(8): 083501
https://doi.org/10.1063/1.2885072
11
Zheng Z, Iqbal M, Liu J. Dispersion characteristics of SOI-based slot optical waveguides. Optics Communications, 2008, 281(20): 5151–5155
https://doi.org/10.1016/j.optcom.2008.07.003
12
Willner A E, Zhang L, Yue Y. Tailoring of dispersion and nonlinear properties of integrated silicon waveguides for signal processing applications. Semiconductor Science and Technology, 2011, 26(1): 014044
https://doi.org/10.1088/0268-1242/26/1/014044
13
Zhang L, Yue Y, Beausoleil R G, Willner A E. Analysis and engineering of chromatic dispersion in silicon waveguide bends and ring resonators. Optics Express, 2011, 19(9): 8102–8107
https://doi.org/10.1364/OE.19.008102
pmid: 21643060
14
Bao C, Yan Y, Zhang L, Yue Y, Willner A E. Tailoring of low chromatic dispersion over a broadband in silicon waveguides using a double-slot design. In: Proceedings of Conference on Laser and Electro-Optics. 2013, JTu4A.53-1–JTu4A.53-2
15
Yan Y, Matsko A, Bao C, Maleki L, Willner A E. Increasing the spectral bandwidth of optical frequency comb generation in a microring resonator using dispersion tailoring slotted waveguide. In: Proceedings of IEEE Photonics Conference. 2013, 230–231
16
Bao C, Yan Y, Zhang L, Yue Y, Ahmed N, Agarwal A M, Kimerling L C, Michel J, Willner A E. Increased bandwidth with flattened and low dispersion in a horizontal double-slot silicon waveguide. Journal of the Optical Society of America B, Optical Physics, 2015, 32(1): 26–30
https://doi.org/10.1364/JOSAB.32.000026
17
Sun R, Dong P, Feng N N, Hong C Y, Michel J, Lipson M, Kimerling L. Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm. Optics Express, 2007, 15(26): 17967–17972 PMID:19551093
https://doi.org/10.1364/OE.15.017967
18
Prabhu A M, Tsay A, Han Z, Van V. Extreme miniaturization of silicon add–drop microring filters for VLSI photonics applications. IEEE Photonics Journal, 2010, 2(3): 436–444
https://doi.org/10.1109/JPHOT.2010.2049831
19
Selvaraja S K, Jaenen P, Bogaerts W, Van Thourhout D, Dumon P, Baets R. Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography. Journal of Lightwave Technology, 2009, 27(18): 4076–4083
https://doi.org/10.1109/JLT.2009.2022282
20
Selvaraja S K, Bogaerts W, Dumon P, Van Thourhout D, Baets R. Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 316–324
https://doi.org/10.1109/JSTQE.2009.2026550
21
Selvaraja S K, De Vos K, Bogaerts W, Bienstman P, Van Thourhout D, Baets R. Effect of device density on the uniformity of silicon nano-photonic waveguide devices. In: Proceedings of IEEE LEOS Annual Meeting Conference. 2009, 311–312
22
Xiao S, Khan M H, Shen H, Qi M. Compact silicon microring resonators with ultra-low propagation loss in the C band. Optics Express, 2007, 15(22): 14467–14475
https://doi.org/10.1364/OE.15.014467
pmid: 19550724
23
Bogaerts W, Selvaraja S K, Dumon P, Brouckaert J, De Vos K, Van Thourhout D, Baets R. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 33–44
https://doi.org/10.1109/JSTQE.2009.2039680
24
Atabaki A H, Askari M, Eftekhar A A, Adibi A. Accurate post-fabrication trimming of silicon resonators. In: Proceedings of IEEE International Conference on Group IV Photonics GFP. 2012, 42–44
Shinobu F, Ishikura N, Arita Y, Tamanuki T, Baba T. Continuously tunable slow-light device consisting of heater-controlled silicon microring array. Optics Express, 2011, 19(14): 13557–13564
https://doi.org/10.1364/OE.19.013557
pmid: 21747511
27
Fontaine N K, Yang J, Pan Z, Chu S, Chen W, Little B E, Ben Yoo S J. Continuously tunable optical buffering at 40 Gb/s for optical packet switching networks. Journal of Lightwave Technology, 2008, 26(23): 3776–3783
https://doi.org/10.1109/JLT.2008.2004793
28
Zhu M, Liu H, Li X, Huang N, Sun Q, Wen J, Wang Z. Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides. Optics Express, 2012, 20(14): 15899–15907
https://doi.org/10.1364/OE.20.015899
pmid: 22772280
29
Subbaraman H, Ling T, Jiang Y, Chen M Y, Cao P, Chen R T. Design of a broadband highly dispersive pure silica photonic crystal fiber. Applied Optics, 2007, 46(16): 3263–3268
https://doi.org/10.1364/AO.46.003263
pmid: 17514284
30
Yoo H G, Fu Y, Riley D, Shin J H, Fauchet P M. Birefringence and optical power confinement in horizontal multi-slot waveguides made of Si and SiO2. Optics Express, 2008, 16(12): 8623–8628
https://doi.org/10.1364/OE.16.008623
pmid: 18545575
31
Yang S H, Cooper M L, Bandaru P R, Mookherjea S. Giant birefringence in multi-slotted silicon nanophotonic waveguides. Optics Express, 2008, 16(11): 8306–8316
https://doi.org/10.1364/OE.16.008306
pmid: 18545544
32
Ding R, Baehr-Jones T, Kim W, Boyko B, Bojko R, Spott A, Pomerene A, Hill C, Reinhardt W, Hochberg M. Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator. Applied Physics Letters, 2011, 98(23): 233303
https://doi.org/10.1063/1.3597798
33
Uranus H P, Hoekstra H J W M. Modeling of loss-induced superluminal and negative group velocity in two-port ring-resonator circuits. Journal of Lightwave Technology, 2007, 25(9): 2376–2384
https://doi.org/10.1109/JLT.2007.901524
34
Lou F. Theoretical study on microring resonators based all optical buffers. Dissertation for the Doctoral Degree.Wuhan: Huazhong University of Science and Technology, 2011, 21–27