1. Department of Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark 2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China 3. Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden 4. FOTON Laboratory, CNRS UMR 6082, University of Rennes 1, ENSSAT, 22300 Lannion, France
Silicon micro-ring resonators (MRRs) are compact and versatile devices whose periodic frequency response can be exploited for a wide range of applications. In this paper, we review our recent work on linear all-optical signal processing applications using silicon MRRs as passive filters. We focus on applications such as modulation format conversion, differential phase-shift keying (DPSK) demodulation, modulation speed enhancement of directly modulated lasers (DMLs), and monocycle pulse generation. The possibility to implement polarization diversity circuits, which reduce the polarization dependence of standard silicon MRRs, is illustrated on the particular example of DPSK demodulation.
Hirano M, Nakanishi T, Okuno T, Onishi M. Silica-based highly nonlinear fibers and their application. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 103–113
https://doi.org/10.1109/JSTQE.2008.2010241
2
Oxenlowe L K, Ji H, Galili M, Pu M, Hu H, Mulvad H C H, Yvind K, Hvam J M, Clausen A T, Jeppesen P. Silicon photonics for signal processing of Tbit/s serial data signals. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(2): 996–1005
https://doi.org/10.1109/JSTQE.2011.2140093
3
Pelusi M D, Ta’eed V G, Fu L, Magi E, Lamont M R E, Madden S, Choi D Y, Bulla D A P, Luther-Davies B, Eggleton B J. Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3): 529–539
https://doi.org/10.1109/JSTQE.2008.918669
4
Stubkjaer K E. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1428–1435
https://doi.org/10.1109/2944.902198
5
Langrock C, Kumar S, McGeehan J E, Willner A E, Fejer M M. All-optical signal processing using χ(2) nonlinearities in guided-wave devices. Journal of Lightwave Technology, 2006, 24(7): 2579–2592
https://doi.org/10.1109/JLT.2006.874605
6
Bogaerts W, De Heyn P, Van Vaerenbergh T, De Vos K, Kumar Selvaraja S, Claes T, Dumon P, Bienstman P, Van Thourhout D, Baets R. Silicon microring resonators. Laser & Photonics Reviews, 2012, 6(1): 47–73
https://doi.org/10.1002/lpor.201100017
Little B E, Chu S T, Haus H A, Foresi J, Laine J P. Microring resonator channel dropping filters. Journal of Lightwave Technology, 1997, 15(6): 998–1005
https://doi.org/10.1109/50.588673
9
Krauss T, Laybourn P J R, Roberts J. CW operation of semiconductor ring lasers. Electronics Letters, 1990, 26(25): 2095–2097
https://doi.org/10.1049/el:19901349
Hill M T, Dorren H J S, De Vries T, Leijtens X J M, Den Besten J H, Smalbrugge B, Oei Y S, Binsma H, Khoe G D, Smit M K. A fast low-power optical memory based on coupled micro-ring lasers. Nature, 2004, 432(7014): 206–209
https://doi.org/10.1038/nature03045
pmid: 15538365
12
Ding Y, Zhang X B, Zhang X L, Huang D. Proposal for loadable and erasable optical memory unit based on dual active microring optical integrators. Optics Communications, 2008, 281(21): 5315–5321
https://doi.org/10.1016/j.optcom.2008.07.030
13
Ding Y, Zhang X, Zhang X, Huang D. Active microring optical integrator associated with electroabsorption modulators for high speed low light power loadable and erasable optical memory unit. Optics Express, 2009, 17(15): 12835–12848
https://doi.org/10.1364/OE.17.012835
pmid: 19654690
14
Ding Y, Pu M, Liu L, Xu J, Peucheret C, Zhang X, Huang D, Ou H. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure. Optics Express, 2011, 19(7): 6462–6470
https://doi.org/10.1364/OE.19.006462
pmid: 21451674
15
Yariv A. Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electronics Letters, 2000, 36(4): 321–322
https://doi.org/10.1049/el:20000340
16
Amarnath K. Active microring and microdisk optical resonator on indium phosphide. Dissertation for the Doctoral degree. College Park: University of Maryland, 2006
17
Yu Y, Zhang X L, Huang D X, Li L J, Fu W. 20-Gb/s all-optical format conversions from RZ signals with different duty cycles to NRZ signals. IEEE Photonics Technology Letters, 2007, 19(14): 1027–1029
https://doi.org/10.1109/LPT.2007.898762
18
Zhang Y, Xu E, Huang D, Zhang X. All-optical format conversion from RZ to NRZ utilizing microfiber resonator. IEEE Photonics Technology Letters, 2009, 21(17): 1202–1204
https://doi.org/10.1109/LPT.2009.2024215
19
Ding Y, Peucheret C, Pu M, Zsigri B, Seoane J, Liu L, Xu J, Ou H, Zhang X, Huang D. Multi-channel WDM RZ-to-NRZ format conversion at 50 Gbit/s based on single silicon microring resonator. Optics Express, 2010, 18(20): 21121–21130
https://doi.org/10.1364/OE.18.021121
pmid: 20941008
20
Xiong M, Ozolins O, Ding Y, Huang B, An Y, Ou H, Peucheret C, Zhang X. Simultaneous RZ-OOK to NRZ-OOK and RZ-DPSK to NRZ-DPSK format conversion in a silicon microring resonator. Optics Express, 2012, 20(25): 27263–27272
https://doi.org/10.1364/OE.20.027263
pmid: 23262676
21
Hansen Mulvad H C, Oxenløwe L K, Galili M, Clausen A T, Grüner-Nielsen L, Jeppesen P. 1.28 Tbit/s single-polarisation serial OOK optical data generation and demultiplexing. Electronics Letters, 2009, 45(5): 280–281
https://doi.org/10.1049/el:20090206
22
Hayee M I, Willner A E. NRZ versus RZ in 10–40-Gb/s dispersion-managed WDM transmission systems. IEEE Photonics Technology Letters, 1999, 11(8): 991–993
https://doi.org/10.1109/68.775323
23
Ding Y, Hu H, Galili M, Xu J, Liu L, Pu M, Mulvad H C H, Oxenløwe L K, Peucheret C, Jeppesen P, Zhang X, Huang D, Ou H. Generation of a 640 Gbit/s NRZ OTDM signal using a silicon microring resonator. Optics Express, 2011, 19(7): 6471–6477
https://doi.org/10.1364/OE.19.006471
pmid: 21451675
24
Hansen Mulvad H C, Galili M, Oxenløwe L K, Hu H, Clausen A T, Jensen J B, Peucheret C, Jeppesen P. Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel. Optics Express, 2010, 18(2): 1438–1443
https://doi.org/10.1364/OE.18.001438
pmid: 20173971
25
Gnauck A H, Winzer P J. Optical phase-shift-keyed transmission. Journal of Lightwave Technology, 2005, 23(1): 115–130
https://doi.org/10.1109/JLT.2004.840357
Zhang L, Yang J Y, Song M, Li Y, Zhang B, Beausoleil R G, Willner A E. Microring-based modulation and demodulation of DPSK signal. Optics Express, 2007, 15(18): 11564–11569
https://doi.org/10.1364/OE.15.011564
pmid: 19547514
28
Xu L, Li C, Wong C, Tsang H K. Optical differential-phase shift- keying demodulation using a silicon microring resonator. IEEE Photonics Technology Letters, 2009, 21(5): 295–297
https://doi.org/10.1109/LPT.2008.2010873
29
Ding Y, Xu J, Peucheret C, Pu M, Liu L, Seoane J, Ou H, Zhang X, Huang D. Multi-channel 40 Gb/s NRZ-DPSK demodulation using a single silicon microring resonator. Journal of Lightwave Technology, 2011, 29(5): 677–684
https://doi.org/10.1109/JLT.2010.2101049
30
Matsui Y, Mahgerefteh D, Zheng X, Liao C, Fan Z F, McCallion K, Tayebati P. Chirp-managed directly modulated laser (CML). IEEE Photonics Technology Letters, 2006, 18(2): 385–387
https://doi.org/10.1109/LPT.2005.862358
31
An Y, Lorences Riesgo A, Seoane J, Ding Y, Ou H, Peucheret C. Transmission property of directly modulated signals enhanced by a micro-ring resonator. In: Proceedings of OptoElectronics and Communications Conference, OECC’2012. Busan, Korea, 2012, paper 6F3–3
32
An Y, Müller M, Estaran J, Spiga S, Da Ros F, Peucheret C, Amann M C. Signal quality enhancement of directly-modulated VCSELs using a micro-ring resonator transfer function. In: Proceedings of OptoElectronics and Communications Conference/Photonics in Switching, OECC/PS’2013. Kyoto, Japan, 2013, paper ThK3–3
33
Yao J, Zeng F, Wang Q. Photonic generation of ultrawideband signals. Journal of Lightwave Technology, 2007, 25(11): 3219–3235
https://doi.org/10.1109/JLT.2007.906820
34
Liu F, Wang T, Zhang Z, Qiu M, Su Y. On-chip photonic generation of ultrawideband monocycle pulses. Electronics Letters, 2009, 45(24): 1247–1249
https://doi.org/10.1049/el.2009.1529
35
Ding Y, Huang B, Peucheret C, Xu J, Ou H, Zhang X, Huang D. Ultra-wide band signal generation using a coupling-tunable silicon microring resonator. Optics Express, 2014, 22(5): 6078–6085
https://doi.org/10.1364/OE.22.006078
pmid: 24663942
36
Barwicz T, Watts M R, Popovic M, Rakich P T, Socci L, Kartner F X, Ippen E P, Smith H I. Polarization-transparent microphotonic devices in the strong confinement limit. Nature Photonics, 2007, 1(1): 57–60
https://doi.org/10.1038/nphoton.2006.41
37
Ding Y, Liu L, Peucheret C, Xu J, Ou H, Yvind K, Zhang X, Huang D. Towards polarization diversity on the SOI platform with simple fabrication process. IEEE Photonics Technology Letters, 2011, 23(23): 1808–1810
https://doi.org/10.1109/LPT.2011.2169776
38
Liu L, Ding Y, Yvind K, Hvam J M. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits. Optics Express, 2011, 19(13): 12646–12651
https://doi.org/10.1364/OE.19.012646
pmid: 21716506
39
Zhang J, Yu M, Lo G Q, Kwong D L. Silicon-waveguide-based mode evolution polarization rotator. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 53–60
https://doi.org/10.1109/JSTQE.2009.2031424
40
Ding Y, Liu L, Peucheret C, Ou H. Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler. Optics Express, 2012, 20(18): 20021–20027
https://doi.org/10.1364/OE.20.020021
pmid: 23037055
41
Ding Y, Ou H, Peucheret C. Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process. Optics Letters, 2013, 38(8): 1227–1229
https://doi.org/10.1364/OL.38.001227
pmid: 23595439
42
Ding Y, Huang B, Ou H, Da Ros F, Peucheret C. Polarization diversity DPSK demodulator on the silicon-on-insulator platform with simple fabrication. Optics Express, 2013, 21(6): 7828–7834
https://doi.org/10.1364/OE.21.007828
pmid: 23546164