Asymmetric directional couplers based on silicon nanophotonic waveguides and applications
Daoxin DAI(),Shipeng WANG
State Key Laboratory for Modern Optical Instrumentation, Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
Directional couplers (DCs) have been playing an important role as a basic element for realizing power exchange. Previously most work was focused on symmetric DCs and little work was reported for asymmetric directional couplers (ADCs). In recently years, silicon nanophotonic waveguides with ultra-high index contrast and ultra-small cross section have been developed very well and it has been shown that ADCs based on silicon-on-insulator (SOI) nanophotonic waveguides have some unique ability for polarization-selective coupling as well as mode-selective coupling, which are respectively very important for polarization-related systems and mode-division-mulitplexing systems. In this paper, a review is given for the recent progresses on silicon-based ADCs and the applications for power splitting, polarization beam splitting, as well as mode conversion/(de)multiplexing.
Fukuda H, Yamada K, Tsuchizawa T, Watanabe T, Shinojima H, Itabashi S. Ultrasmall polarization splitter based on silicon wire waveguides. Optics Express, 2006, 14(25): 12401–12408
https://doi.org/10.1364/OE.14.012401
pmid: 19529672
2
Shi Y, Anand S, He S. Design of a polarization insensitive triplexer using directional couplers based on submicron silicon Rib waveguides. Journal of Lightwave Technology, 2009, 27(11): 1443–1447
https://doi.org/10.1109/JLT.2008.2010465
3
Okamoto K. Fundamentals of Optical Waveguides.New York: Academic Press, 2010
4
Haus H A, Huang W P, Kawakami S, Whitaker N. Coupled-mode theory of optical waveguides. Journal of Lightwave Technology, 1987, 5(1): 16–23
https://doi.org/10.1109/JLT.1987.1075416
5
Wagner R E, Cheng J. Electrically controlled optical switch for multimode fiber applications. Applied Optics, 1980, 19(17): 2921–2925
https://doi.org/10.1364/AO.19.002921
pmid: 20234527
6
Schmidt R V, Alferness R C. Directional coupler switches, modulators, and filters using alternating Db techniques. IEEE Transactions on Circuits and Systems, 1979, 26(12): 1099–1108
https://doi.org/10.1109/TCS.1979.1084592
7
Kogelnik H, Schmidt R V. Switched directional couplers with alternating Db. IEEE Journal of Quantum Electronics, 1976, 12(7): 396–401
https://doi.org/10.1109/JQE.1976.1069190
8
Paniccia M J. A perfect marriage: optics and silicon. Optik & Photonik, 2011, 6(2): 34–38
9
Bogaerts W, Selvaraja S K, Dumon P, Brouckaert J, De Vos K, Van Thourhout D, Baets R. Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 33–44
https://doi.org/10.1109/JSTQE.2009.2039680
10
Bogaerts W, Dumon P, Van Thourhout D, Taillaert D, Jaenen P, Wouters J, Beckx S, Wiaux V, Baets R. Compact wavelength-selective functions in silicon-on-insulator photonic wires. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1394–1401
https://doi.org/10.1109/JSTQE.2006.884088
11
Sasaki K, Ohno F, Motegi A, Baba T. Arrayed waveguide grating of 70× 60 µm2 size based on Si photonic wire waveguides. Electronics Letters, 2005, 41(14): 801–802
https://doi.org/10.1049/el:20051541
12
Bogaerts W, Dumon P, Van Thourhout D, Taillaert D, Jaenen P, Wouter J, Beckx S, Wiaux V, Baets R G. Compact wavelength-selective functions in silicon-on-insulator photonic wires. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(6): 1394–1401
https://doi.org/10.1109/JSTQE.2006.884088
13
Soltani M, Yegnanarayanan S, Adibi A. Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics. Optics Express, 2007, 15(8): 4694–4704
https://doi.org/10.1364/OE.15.004694
pmid: 19532715
14
Li C, Zhou L, Poon A W. Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling. Optics Express, 2007, 15(8): 5069–5076
https://doi.org/10.1364/OE.15.005069
pmid: 19532756
15
Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M. A continuous-wave Raman silicon laser. Nature, 2005, 433(7027): 725–728
https://doi.org/10.1038/nature03346
pmid: 15716948
Barrios C A, Almeida V R, Panepucci R, Lipson M. Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices. Journal of Lightwave Technology, 2003, 21(10): 2332–2339
https://doi.org/10.1109/JLT.2003.818167
18
Tang Y, Chen H W, Jain S, Peters J D, Westergren U, Bowers J E. 50 Gb/s hybrid silicon traveling-wave electroabsorption modulator. Optics Express, 2011, 19(7): 5811–5816
https://doi.org/10.1364/OE.19.005811
pmid: 21451605
19
Dai D, Liu L, Wosinski L, He S. Design and fabrication of ultra-small overlapped AWG demultiplexer based on α-SOI nanowire waveguides. Electronics Letters, 2006, 42(7): 400–402
https://doi.org/10.1049/el:20060157
Vermeulen D, Van Acoleyen K, Ghosh S, Selvaraja S, De Cort W, Yebo N, Hallynck E, De Vos K, Debackere P, Dumon P, Bogaerts W, Roelkens G, Van Thourhout D, Baets R. Efficient tapering to the fundamental quasi-TM mode in asymmetrical waveguides. In: Proceedings of European Conference on Integrated Optics (ECIO), United Kingdom, 2010. Paper Wep16
22
Dai D, Bowers J E. Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires. Optics Express, 2011, 19(11): 10940–10949
https://doi.org/10.1364/OE.19.010940
pmid: 21643354
23
Dai D, Bauters J, Bowers J E. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light, Science & Applications, 2012, 1(3): e1
https://doi.org/10.1038/lsa.2012.1
24
Dai D, Liu L, Gao S, Xu D, He S. Polarization management for silicon photonic integrated circuits. Laser & Photonics Reviews, 2013, 7(3): 303–328
https://doi.org/10.1002/lpor.201200023
25
Augustin L M, Van der Tol J J G M, Hanfoug R, de Laat W J M, Van de Moosdijk M J E, Van Dijk P W L, Oei Y, Smit M K. A single etch-step fabrication-tolerant polarization splitter. Journal of Lightwave Technology, 2007, 25(3): 740–746
https://doi.org/10.1109/JLT.2006.890430
26
Liang T K, Tsang H K. Integrated polarization beam splitter in high index contrast silicon-on-insulator waveguides. IEEE Photonics Technology Letters, 2005, 17(2): 393–395
https://doi.org/10.1109/LPT.2004.839462
27
Augustin L M, Hanfoug R, Van der Tol J, de Laat W J M, Smit M K. A compact integrated polarization splitter/converter in InGaAsP-InP. IEEE Photonics Technology Letters, 2007, 19(17): 1286–1288
https://doi.org/10.1109/LPT.2007.902277
28
Hong J M, Ryu H H, Park S R, Jeong J W, Gol L S, Lee E H, Park S G, Woo D, Kim S O B H. Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application. IEEE Photonics Technology Letters, 2003, 15(1): 72–74
https://doi.org/10.1109/LPT.2002.805803
29
Jiao Y, Dai D, Shi Y, He S. Shortened polarization beam splitters with two cascaded multimode interference sections. IEEE Photonics Technology Letters, 2009, 21(20): 1538–1540
https://doi.org/10.1109/LPT.2009.2029349
30
Tu Z, Huang Y W, Yi H X, Wang X J, Li Y P, Li L, Hu W W.A compact SOI polarization beam splitter based on multimode interference coupler. Proceedings of SPIE-The International Society for Optical Engineering, 2011, 8307(1):1–6
31
Yang B K, Shin S Y, Zhang D. Ultrashort polarization splitter using two-mode interference in silicon photonic wires. IEEE Photonics Technology Letters, 2009, 21(7): 432–434
https://doi.org/10.1109/LPT.2009.2013638
32
Kiyat I, Aydinli A, Dagli N. A compact silicon-on-insulator polarization splitter. IEEE Photonics Technology Letters, 2005, 17(1): 100–102
https://doi.org/10.1109/LPT.2004.838133
33
Xiao J, Liu X, Sun X. Design of a compact polarization splitter in horizontal multiple-slotted waveguide structures. Japanese Journal of Applied Physics, 2008, 47(5R): 3748–3754
34
Tu X, Ang S S N, Chew A B, Teng J, Mei T. An ultracompact directional coupler based on gaas cross-slot waveguide. IEEE Photonics Technology Letters, 2010, 22(17): 1324–1326
https://doi.org/10.1109/LPT.2010.2055234
35
Yamazaki T, Aono H, Yamauchi J, Nakano H. Coupled waveguide polarization splitter with slightly different core widths. Journal of Lightwave Technology, 2008, 26(21): 3528–3533
https://doi.org/10.1109/JLT.2008.917322
36
Yue Y, Zhang L, Yang J Y, Beausoleil R G, Willner A E. Silicon-on-insulator polarization splitter using two horizontally slotted waveguides. Optics Letters, 2010, 35(9): 1364–1366
https://doi.org/10.1364/OL.35.001364
pmid: 20436570
37
Shi Y, Dai D, He S. Proposal for an ultracompact polarization-beam splitter based on a photonic-crystal-assisted multimode interference coupler. IEEE Photonics Technology Letters, 2007, 19(11): 825–827
https://doi.org/10.1109/LPT.2007.897297
38
Ao X, Liu L, Wosinski L, He S. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type. Applied Physics Letters, 2006, 89(17): 171115
https://doi.org/10.1063/1.2360201
39
Dai D. Silicon polarization beam splitter based on an asymmetrical evanescent coupling system with three optical waveguides. Journal of Lightwave Technology, 2012, 30(20): 3281–3287
https://doi.org/10.1109/JLT.2012.2218217
40
Dai D, Bowers J E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Optics Express, 2011, 19(19): 18614–18620
https://doi.org/10.1364/OE.19.018614
pmid: 21935230
41
Wang J, Liang D, Tang Y, Dai D, Bowers J E. Realization of an ultra-short silicon polarization beam splitter with an asymmetrical bent directional coupler. Optics Letters, 2013, 38(1): 4–6
https://doi.org/10.1364/OL.38.000004
pmid: 23282819
42
Komatsu M A, Saitoh K, Koshiba M. Design of miniaturized silicon wire and slot waveguide polarization splitter based on a resonant tunneling. Optics Express, 2009, 17(21): 19225–19233
https://doi.org/10.1364/OE.17.019225
pmid: 20372659
43
Dai D, Wang Z, Bowers J E. Ultrashort broadband polarization beam splitter based on an asymmetrical directional coupler. Optics Letters, 2011, 36(13): 2590–2592
https://doi.org/10.1364/OL.36.002590
pmid: 21725489
44
Lin S, Hu J, Crozier K B. Ultracompact, broadband slot waveguide polarization splitter. Applied Physics Letters, 2011, 98(15): 151101
https://doi.org/10.1063/1.3579243
45
Lou F, Dai D, Wosinski L. Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler. Optics Letters, 2012, 37(16): 3372–3374
https://doi.org/10.1364/OL.37.003372
pmid: 23381261
46
Chee J, Zhu S, Lo G Q. CMOS compatible polarization splitter using hybrid plasmonic waveguide. Optics Express, 2012, 20(23): 25345–25355
https://doi.org/10.1364/OE.20.025345
pmid: 23187351
47
Guan X, Wu H, Shi Y, Wosinski L, Dai D. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Optics Letters, 2013, 38(16): 3005–3008
https://doi.org/10.1364/OL.38.003005
pmid: 24104633
48
Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
https://doi.org/10.1364/OL.29.001209
pmid: 15209249
49
Dai D, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653
https://doi.org/10.1364/OE.17.016646
pmid: 19770880
50
Song Y, Wang J, Li Q, Yan M, Qiu M. Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. Optics Express, 2010, 18(12): 13173–13179
https://doi.org/10.1364/OE.18.013173
pmid: 20588445
51
Dai D. Silicon mode-(de) multiplexer for a hybrid multiplexing system to achieve ultrahigh capacity photonic networks-on-chip with a single-wavelength-carrier light. In: Proceedings of Communications And Photonics Conference (ACP), IEEE, 2012, 1–3
52
Little B E, Chu S T, Absil P P, Hryniewicz J V, Johnson F G, Seiferth F, Gill D, Van V, King O, Trakalo M. Very high-order microring resonator filters for WDM applications. IEEE Photonics Technology Letters, 2004, 16(10): 2263–2265
https://doi.org/10.1109/LPT.2004.834525
53
Luo X, Song J, Feng S, Poon A W, Liow T Y, Yu M, Lo G Q, Kwong D L. Silicon high-order coupled-microring-based electro-optical switches for on-chip optical interconnects. IEEE Photonics Technology Letters, 2012, 24(10): 821–823
https://doi.org/10.1109/LPT.2012.2188829
54
Tobing L Y M, Dumon P, Baets R, Chin M K. Boxlike filter response based on complementary photonic bandgaps in two-dimensional microresonator arrays. Optics Letters, 2008, 33(21): 2512–2514
https://doi.org/10.1364/OL.33.002512
pmid: 18978904
Little B E, Chu S T, Haus H A, Foresi J, Laine J P. Microring resonator channel dropping filters. Journal of Lightwave Technology, 1997, 15(6): 998–1005
57
Xia F, Rooks M, Sekaric L, Vlasov Y. Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects. Optics Express, 2007, 15(19): 11934–11941
https://doi.org/10.1364/OE.15.011934
pmid: 19547556
58
Bachmann M, Besse P A, Melchior H. General self-imaging properties in N × N multimode interference couplers including phase relations. Applied Optics, 1994, 33(18): 3905–3911
https://doi.org/10.1364/AO.33.003905
pmid: 20935735
59
Chen P, Chen S, Guan X, Shi Y, Dai D. High-order microring resonators with bent couplers for a box-like filter response. Optics Letters, 2014, 39(21): 6304–6307
https://doi.org/10.1364/OL.39.006304
pmid: 25361340
60
Morino H, Maruyama T, Iiyama K. Reduction of wavelength dependence of coupling characteristics using si optical waveguide curved directional coupler. Journal of Lightwave Technology, 2014, 32(12): 2188–2192
https://doi.org/10.1109/JLT.2014.2321660
61
Xia F, Sekaric L, Vlasov Y A. Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators. Optics Express, 2006, 14(9): 3872–3886
https://doi.org/10.1364/OE.14.003872
pmid: 19516534
62
Soldano L B, de Vreede A I, Smit M K, Verbeek B H, Metaal E G, Groen F H. Mach-Zehnder interferometer polarization splitter in InGaAsP/InP. IEEE Photonics Technology Letters, 1994, 6(3): 402–405
https://doi.org/10.1109/68.275500
63
Tang Y, Dai D, He S. Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits. IEEE Photonics Technology Letters, 2009, 21(4): 242–244
https://doi.org/10.1109/LPT.2008.2010528
64
Alam M Z, Meier J, Aitchison J S, Mojahedi M.Super mode propagation in low index medium. In: Proceeding of Photonic Applications Systems Technologies Conference, Optical Society of America, 2007, Jthd112
65
Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics, 2008, 2(8): 496–500
https://doi.org/10.1038/nphoton.2008.131
66
Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461(7264): 629–632
https://doi.org/10.1038/nature08364
pmid: 19718019
67
Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode oof metal-dielectric-gap optical waveguides. IEEE Photonics Technology Letters, 2009, 21(6): 362–364
https://doi.org/10.1109/LPT.2008.2011995
68
Sorin W V, Kim B Y, Shaw H J. Highly selective evanescent modal filter for two-mode optical fibers. Optics Letters, 1986, 11(9): 581–583
https://doi.org/10.1364/OL.11.000581
pmid: 19738695
69
Li A, Chen X, Amin A A, Shieh W. Fused fiber mode couplers for few-mode transmission. IEEE Photonics Technology Letters, 2012, 24(21): 1953–1956
https://doi.org/10.1109/LPT.2012.2218803
70
Fontaine N K, Doerr C R, Mestre M A, Ryf R, Winzer P, Buhl L, Sun Y, Jiang X, Lingle R.Space-division multiplexing and all-optical MIMO demultiplexing using a photonic integrated circuit. In: Proceeding of Optical Fiber Communication Conference, Optical Society of America, 2012, PDP5B. 1
71
Wohlfeil B, Stamatiadis C, Zimmermann L, Petermann K.Compact fiber grating coupler on SOI for coupling of higher order fiber modes. In: Proceeding of Optical Fiber Communication Conference, Optical Society of America, 2013, OTh1B. 2
72
Ding Y, Ou H, Xu J, Peucheret C. Silicon photonic integrated circuit mode multiplexer. IEEE Photonics Technology Letters, 2013, 25(7): 648–651
https://doi.org/10.1109/LPT.2013.2247394
73
Koonen A M J, Chen H, Van den Boom H P A, Raz O. Silicon photonic integrated mode multiplexer and demultiplexer. IEEE Photonics Technology Letters, 2012, 24(21): 1961–1964
https://doi.org/10.1109/LPT.2012.2219304
74
Uematsu T, Ishizaka Y, Kawaguchi Y, Saitoh K, Koshiba M. Design of a compact two-mode multi/demultiplexer consisting of multi-mode interference waveguides and a wavelength insensitive phase shifter for mode-division multiplexing transmission. Journal of Lightwave Technology, 2012, 30(15): 2421–2426
https://doi.org/10.1109/JLT.2012.2199961
75
Greenberg M, Orenstein M. Multimode add-drop multiplexing by adiabatic linearly tapered coupling. Optics Express, 2005, 13(23): 9381–9387
https://doi.org/10.1364/OPEX.13.009381
pmid: 19503139
76
Greenberg M Y, Orenstein M.Mode add drop for optical interconnects based on adiabatic high order mode couplers. In: Proceedings of Quantum Electronics and Laser Science Conference, Optical Society of America, 2005, JTuC55
77
Xing J, Li Z, Xiao X, Yu J, Yu Y. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Optics Letters, 2013, 38(17): 3468–3470
https://doi.org/10.1364/OL.38.003468
pmid: 23988986
78
Love J D, Vance R W C, Joblin A. Asymmetric, adiabatic multipronged planar splitters. Optical and Quantum Electronics, 1996, 28(4): 353–369
https://doi.org/10.1007/BF00287024
Low A L Y, Yong Y S, You A H, Chien S F, Teo C F. A five-order mode converter for multimode waveguide. IEEE Photonics Technology Letters, 2004, 16(7): 1673–1675
https://doi.org/10.1109/LPT.2004.828512
81
Riesen N, Love J D. Spatial mode-division-multiplexing of few-mode fiber. In: Proceedings of European Conference and Exhibition on Optical Communication, Optical Society of America, 2012, P2. 14
Driscoll J B, Grote R R, Souhan B, Dadap J I, Lu M, Osgood R M. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Optics Letters, 2013, 38(11): 1854–1856
https://doi.org/10.1364/OL.38.001854
pmid: 23722767
84
Chen W, Wang P, Yang J. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Optics Express, 2013, 21(21): 25113–25119
https://doi.org/10.1364/OE.21.025113
pmid: 24150354
85
Bagheri S, Green W. Silicon-on-insulator mode-selective add-drop unit for on-chip mode-division multiplexing. In: Proceedings of 2009 6th IEEE International Conference on Group IV Photonics, 2009
86
Dai D, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Optics Letters, 2013, 38(9): 1422–1424
https://doi.org/10.1364/OL.38.001422
pmid: 23632505
87
Hanzawa N, Saitoh K, Sakamoto T, Matsui T, Tsujikawa K, Koshiba M, Yamamoto F. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission. Optics Express, 2013, 21(22): 25752–25760
https://doi.org/10.1364/OE.21.025752
pmid: 24216801
88
Qiu H, Yu H, Hu T, Jiang G, Shao H, Yu P, Yang J, Jiang X. Silicon mode multi/demultiplexer based on multimode grating-assisted couplers. Optics Express, 2013, 21(15): 17904–17911
https://doi.org/10.1364/OE.21.017904
pmid: 23938662
89
Luo L W, Ophir N, Chen C, Gabrielli L H, Poitras C B, Bergman K, Lipson M. Simultaneous mode and wavelength division multiplexing on-chip. arXiv preprint arXiv:1306.2378, 2013
90
Ding Y, Xu J, Da Ros F, Huang B, Ou H, Peucheret C. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Optics Express, 2013, 21(8): 10376–10382
https://doi.org/10.1364/OE.21.010376
pmid: 23609748
91
Wang J, He S, Dai D. On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode-and polarization-division-multiplexing. Laser & Photonics Reviews, 2014, 8(2): L18–L22
https://doi.org/10.1002/lpor.201300157
92
Wang J, Chen P, Chen S, Shi Y, Dai D. Improved 8-channel silicon mode demultiplexer with grating polarizers. Optics Express, 2014, 22(11): 12799–12807
https://doi.org/10.1364/OE.22.012799
pmid: 24921475
93
Wang Z, Dai D. Ultrasmall Si-nanowire-based polarization rotator. JOSA B, 2008, 25(5): 747–753
94
Wang J, Chen S, Dai D. Silicon hybrid demultiplexer with 64 channels for wavelength/mode-division multiplexed on-chip optical interconnects. Optics Letters, 2014, 39(24): 6993–6996
https://doi.org/10.1364/OL.39.006993
pmid: 25503049
95
Dai D, Wang J, Chen S, Wang S, He S. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength-and mode-division-multiplexing. Laser & Photonics Reviews, 2015, 9(3): 339–344
https://doi.org/10.1002/lpor.201400446