Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

邮发代号 80-976

Frontiers of Optoelectronics  2016, Vol. 9 Issue (3): 341-345   https://doi.org/10.1007/s12200-016-0628-x
  本期目录
40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier
Michael J. CONNELLY1(),Lukasz KRZCZANOWICZ1,Pascal MOREL2,Ammar SHARAIHA2,Francois LELARGE3,Romain BRENOT3,Siddharth JOSHI3,Sophie BARBET3
1. Optical Communications Research Group, Department of Electronic and Computer Engineering, University of Limerick, Limerick, Ireland
2. Lab-STICC, UMR CNRS 6285, École Nationale d’Ingénieurs de Brest CS 73862, 29238 Brest Cedex 3, France
3. Alcatel Thales III–V Laboratory, Route Departementale, 128, 91767 Palaiseau, France
 全文: PDF(346 KB)   HTML
Abstract

Differential quadrature phase shift keying (DQPSK) modulation is attractive in high-speed optical communications because of its resistance to fiber nonlinearities and more efficient use of fiber bandwidth compared to conventional intensity modulation schemes. Because of its wavelength conversion ability and phase preservation, semiconductor optical amplifier (SOA) four-wave mixing (FWM) has attracted much attention. We experimentally study wavelength conversion of 40 Gbit/s (20 Gbaud) non-return-to-zero (NRZ)-DQPSK data using FWM in a quantum dash SOA with 20 dB gain and 5 dBm output saturation power. Q factor improvement and eye diagram reshaping is shown for up to 3 nm pump-probe detuning and is superior to that reported for a higher gain bulk SOA.

Key wordsdifferential quadrature phase shift keying (DQPSK)    phase modulation    quantum-dash    semiconductor optical amplifier (SOA)    four-wave mixing (FWM)    wavelength conversion
收稿日期: 2016-02-04      出版日期: 2016-09-28
Corresponding Author(s): Michael J. CONNELLY   
 引用本文:   
. [J]. Frontiers of Optoelectronics, 2016, 9(3): 341-345.
Michael J. CONNELLY,Lukasz KRZCZANOWICZ,Pascal MOREL,Ammar SHARAIHA,Francois LELARGE,Romain BRENOT,Siddharth JOSHI,Sophie BARBET. 40 Gb/s NRZ-DQPSK data wavelength conversion with amplitude regeneration using four-wave mixing in a quantum dash semiconductor optical amplifier. Front. Optoelectron., 2016, 9(3): 341-345.
 链接本文:  
https://academic.hep.com.cn/foe/CN/10.1007/s12200-016-0628-x
https://academic.hep.com.cn/foe/CN/Y2016/V9/I3/341
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 Gnauck A H, Winzer P J. Optical phase-shift-keyed transmission. Journal of Lightwave Technology, 2005, 23(1): 115–130
https://doi.org/10.1109/JLT.2004.840357
2 Cho P S, Achiam Y, Levyyurista G, Margalit M, Gross Y, Khurgin J B. Investigation of SOA nonlinearities on the amplification of high spectral efficiency signals. In: Proceedings of Optical Fiber Communication Conference (OFC), 2004, 1: 211–212
3 Wang J, Kahn J M. Impact of chromatic and polarization-mode dispersions on DPSK systems using interferometric demodulation and direct detection. Journal of Lightwave Technology, 2004, 22(2): 362–371
https://doi.org/10.1109/JLT.2003.822101
4 Ho K P. Phase-Modulated Optical Communication Systems. Berlin: Springer, 2005
5 Connelly M J. Semiconductor Optical Amplifiers. Berlin: Springer, 2007
6 Bonk R, Huber G, Vallaitis T, Koenig S, Schmogrow R, Hillerkuss D, Brenot R, Lelarge F, Duan G H, Sygletos S, Koos C, Freude W, Leuthold J. Linear semiconductor optical amplifiers for amplification of advanced modulation formats. Optics Express, 2012, 20(9): 9657–9672
https://doi.org/10.1364/OE.20.009657 pmid: 22535057
7 Akiyama T, Sugawara M, Arakawa Y. Quantum-dot semiconductor optical amplifiers. Proceedings of the IEEE, 2007, 95(9): 1757–1766
https://doi.org/10.1109/JPROC.2007.900899
8 Lelarge F, Dagens B, Renaudier J, Brenot R, Accard A, van Dijk F, Make D, Le Gouezigou O, Provost J, Poingt F, Landreau J, Drisse O, Derouin E, Rousseau B, Pommereau F, Duan G. Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 mm. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 111–124
https://doi.org/10.1109/JSTQE.2006.887154
9 Zilkie A J, Meier J, Mojahedi M, Poole P J, Barrios P, Poitras D, Rotter T J, Yang C, Stintz A, Malloy K J, Smith P W E, Aitchison J S. Carrier dynamics of quantum-dot, quantum-dash, and quantum-well semiconductor optical amplifiers operating at 1.55 mm. IEEE Journal of Quantum Electronics, 2007, 43(11): 982–991
https://doi.org/10.1109/JQE.2007.904474
10 Porzi C, Bogoni A, Contestabile G. Regeneration of DPSK signals in a saturated SOA. IEEE Photonics Technology Letters, 2012, 24(18): 1597–1599
https://doi.org/10.1109/LPT.2012.2210399
11 Porzi C, Bogoni A, Contestabile G. Regenerative wavelength conversion of DPSK signals through FWM in an SOA. IEEE Photonics Technology Letters, 2013, 25(2): 175–178
https://doi.org/10.1109/LPT.2012.2232287
12 Krzczanowicz L, Connelly M J. 40 Gb/s NRZ-DQPSK data all-optical wavelength conversion using four wave mixing in a bulk SOA. IEEE Photonics Technology Letters, 2013, 25(24): 2439–2441
https://doi.org/10.1109/LPT.2013.2288010
13 Matsuura M, Calabretta N, Raz O, Dorren H J S. Simultaneous multichannel wavelength conversion of 50-Gb/s NRZ-DQPSK signals with 100-GHz channel spacing using a quantum-dot SOA. In: Proceedings of 37th European Conference on Optical Communication (ECOC), 2011, 1–3
14 Contestabile G, Yoshida Y, Maruta A, Kitayama K. Coherent wavelength conversion in a quantum dot SOA. IEEE Photonics Technology Letters, 2013, 25(9): 791–794
https://doi.org/10.1109/LPT.2013.2250495
15 Contestabile G, Yoshida Y, Maruta A, Kitayama K. Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA. Optics Express, 2012, 20(25): 27902–27907
https://doi.org/10.1364/OE.20.027902 pmid: 23262735
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed