1. Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China 2. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 3. University of Chinese Academy of Sciences, Beijing 100049, China
Mixed lead-tin (Pb-Sn) perovskites present a promising strategy to extend the light-harvesting range of perovskite-based solar cells (PSCs). The use of electron-transporting layer or hole-transporting layer (HTL) is critical to achieve high device efficiency. This strategy, however, requires tedious layer-by-layer fabrication as well as high-temperature annealing for certain oxides. In this work, we fabricated HTL-free planar FAPb0.5Sn0.5I3 PSCs with the highest efficiency of 7.94%. High short-circuit current density of 23.13 mA/cm2 was attained, indicating effective charge extraction at the ITO/FAPb0.5Sn0.5I3 interface. This finding provides an alternative strategy to simplify the manufacture of single-junction or tandem PSCs.
Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum T C, Lam Y M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy & Environmental Science, 2014, 7(1): 399–407 https://doi.org/10.1039/C3EE43161D
Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J. Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. Nano Letters, 2013, 13(9): 4505–4510 https://doi.org/10.1021/nl4024287
pmid: 23947387
5
Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Advanced Materials, 2014, 26(10): 1584–1589 https://doi.org/10.1002/adma.201305172
pmid: 24757716
6
Ponseca C S Jr, Savenije T J, Abdellah M, Zheng K, Yartsev A, Pascher T, Harlang T, Chabera P, Pullerits T, Stepanov A, Wolf J P, Sundström V. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. Journal of the American Chemical Society, 2014, 136(14): 5189–5192 https://doi.org/10.1021/ja412583t
pmid: 24654882
7
Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344 https://doi.org/10.1126/science.1243982
pmid: 24136964
8
Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156): 344–347 https://doi.org/10.1126/science.1243167
pmid: 24136965
9
Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Electron-hole diffusion lengths>175 mm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970 https://doi.org/10.1126/science.aaa5760
pmid: 25636799
Snaith H J. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. Journal of Physical Chemistry Letters, 2013, 4(21): 3623–3630 https://doi.org/10.1021/jz4020162
12
Liu M, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501(7467): 395–398 https://doi.org/10.1038/nature12509
pmid: 24025775
13
Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050–6051 https://doi.org/10.1021/ja809598r
pmid: 19366264
14
Solar cell efficiency table, ; accessed: April 2016
15
Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348(6240): 1234–1237 https://doi.org/10.1126/science.aaa9272
pmid: 25999372
16
Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510–519 https://doi.org/10.1063/1.1736034
17
Zhao D, Yu Y, Wang C, Liao W, Shrestha N, Grice C R, Cimaroli A J, Guan L, Ellingson R J, Zhu K, Zhao X, Xiong R G, Yan Y. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy, 2017, 2: 17018 https://doi.org/10.1038/nenergy.2017.18
18
Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643–647 https://doi.org/10.1126/science.1228604
pmid: 23042296
19
Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Advanced Functional Materials, 2014, 24(1): 151–157 https://doi.org/10.1002/adfm.201302090
20
Liu D, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 2013, 8(2): 133–138 https://doi.org/10.1038/nphoton.2013.342
21
Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196): 542–546 https://doi.org/10.1126/science.1254050
pmid: 25082698
22
Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Advanced Materials, 2013, 25(27): 3727–3732 https://doi.org/10.1002/adma.201301327
pmid: 23775589
23
Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522–525 https://doi.org/10.1126/science.aaa0472
pmid: 25635093
24
Heo J H, Han H J, Kim D, Ahn T K, Im S H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science, 2015, 8(5): 1602–1608 https://doi.org/10.1039/C5EE00120J
25
Wang J T W, Wang Z, Pathak S, Zhang W, deQuilettes D W, Wisnivesky-Rocca-Rivarola F, Huang J, Nayak P K, Patel J B, Mohd Yusof H A, Vaynzof Y, Zhu R, Ramirez I, Zhang J, Ducati C, Grovenor C, Johnston M B, Ginger D S, Nicholas R J, Snaith H J. Efficient perovskite solar cells by metal ion doping. Energy & Environmental Science, 2016, 9(9): 2892–2901 https://doi.org/10.1039/C6EE01969B
26
Liu L, Mei A, Liu T, Jiang P, Sheng Y, Zhang L, Han H. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. Journal of the American Chemical Society, 2015, 137(5): 1790–1793 https://doi.org/10.1021/ja5125594
pmid: 25594109
27
Yang Y, Ri K, Mei A, Liu L, Hu M, Liu T, Li X, Han H. The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cell. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9103–9107 https://doi.org/10.1039/C4TA07030E
28
Luo Q, Ma H, Zhang Y, Yin X, Yao Z, Wang N, Li J, Fan S, Jiang K, Lin H. Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(15): 5569–5577 https://doi.org/10.1039/C6TA01715K
29
Yang Y, Xiao J, Wei H, Zhu L, Li D, Luo Y, Wu H, Meng Q. An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells. RSC Advances, 2014, 4(95): 52825–52830 https://doi.org/10.1039/C4RA09519G
30
Yu Z, Chen B, Liu P, Wang C, Bu C, Cheng N, Bai S, Yan Y, Zhao X. Stable organic-inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering. Advanced Functional Materials, 2016, 26(27): 4866–4873 https://doi.org/10.1002/adfm.201504564
31
Ye S, Rao H, Yan W, Li Y, Sun W, Peng H, Liu Z, Bian Z, Li Y, Huang C. A strategy to simplify the preparation process of perovskite solar cells by Co-deposition of a hole-conductor and a perovskite layer. Advanced Materials, 2016, 28(43): 9648–9654 https://doi.org/10.1002/adma.201603850
pmid: 27622991
32
Hu Q, Wu J, Jiang C, Liu T, Que X, Zhu R, Gong Q. Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. ACS Nano, 2014, 8(10): 10161–10167 https://doi.org/10.1021/nn5029828
pmid: 25259736
33
Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grätzel M, Han H. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298 https://doi.org/10.1126/science.1254763
pmid: 25035487
34
Tsai K W, Chueh C C, Williams S T, Wen T C, Jen A K Y. High-performance hole-transporting layer-free conventional perovskite/fullerene heterojunction thin-film solar cells. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(17): 9128–9132 https://doi.org/10.1039/C5TA01343G
35
Li Y, Ye S, Sun W, Yan W, Li Y, Bian Z, Liu Z, Wang S, Huang C. Hole-conductor-free planar perovskite solar cells with 16.0% efficiency. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(36): 18389–18394 https://doi.org/10.1039/C5TA05989E
36
Bao X, Zhu Q, Qiu M, Yang A, Wang Y, Zhu D, Wang J, Yang R. High-performance inverted planar perovskite solar cells without a hole transport layer via a solution process under ambient conditions. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(38): 19294–19298 https://doi.org/10.1039/C5TA05026J
37
Zhang Y, Hu X, Chen L, Huang Z, Fu Q, Liu Y, Zhang L, Chen Y. Flexible, hole transporting layer-free and stable CH3NH3PbI3/PC61BM planar heterojunction perovskite solar cells. Organic Electronics, 2016, 30: 281–288 https://doi.org/10.1016/j.orgel.2016.01.002
38
Marshall K P, Walker M, Walton R I, Hatton R A. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nature Energy, 2016, 1: 16178 https://doi.org/10.1038/nenergy.2016.178
39
Feng H J, Paudel T R, Tsymbal E Y, Zeng X C. Tunable optical properties and charge separation in CH3NH3SnxPb1−xI3/TiO2-based planar perovskites cells. Journal of the American Chemical Society, 2015, 137(25): 8227–8236 https://doi.org/10.1021/jacs.5b04015
pmid: 26011597
40
Eperon G E, Leijtens T, Bush K A, Prasanna R, Green T, Wang J T W, McMeekin D P, Volonakis G, Milot R L, May R, Palmstrom A, Slotcavage D J, Belisle R A, Patel J B, Parrott E S, Sutton R J, Ma W, Moghadam F, Conings B, Babayigit A, Boyen H G, Bent S, Giustino F, Herz L M, Johnston M B, McGehee M D, Snaith H J. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354(6314): 861–865 https://doi.org/10.1126/science.aaf9717
pmid: 27856902
41
Deng Y, Xiao Z, Huang J. Light-induced self-poling effect on organometal trihalide perovskite solar cells for increased device efficiency and stability. Advanced Energy Materials, 2015, 5(20): 1500721 https://doi.org/10.1002/aenm.201500721
42
Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Advanced Materials, 2014, 26(41): 7122–7127 https://doi.org/10.1002/adma.201401991
pmid: 25212785
43
Koh T M, Krishnamoorthy T, Yantara N, Shi C, Leong W L, Boix P P, Grimsdale A C, Mhaisalkar S G, Mathews N. Formamidinium tin-based perovskite with low Eg for photovoltaic applications. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(29): 14996–15000 https://doi.org/10.1039/C5TA00190K
44
Liao W, Zhao D, Yu Y, Grice C R, Wang C, Cimaroli A J, Schulz P, Meng W, Zhu K, Xiong R G, Yan Y. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22. Advanced Materials, 2016, 28(42): 9333–9340 https://doi.org/10.1002/adma.201602992
pmid: 27571446