Review of current methods of acousto-optical tomography for biomedical applications
Jacqueline GUNTHER1(), Stefan ANDERSSON-ENGELS1,2
1. Tyndall National Institute, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland 2. Department of Physics, University College Cork, Cork T12 YN60, Ireland
The field of acousto-optical tomography (AOT) for medical applications began in the 1990s and has since developed multiple techniques for the detection of ultrasound-modulated light. Light becomes frequency shifted as it travels through an ultrasound beam. This “tagged” light can be detected and used for focused optical imaging. Here, we present a comprehensive overview of the techniques that have developed since around 2011 in the field of biomedical AOT. This includes how AOT has advanced by taken advantage of the research conducted in the ultrasound, as well as, the optical fields. Also, simulations and reconstruction algorithms have been formulated specifically for AOT imaging over this time period. Future progression of AOT relies on its ability to provide significant contributions to in vivoimaging for biomedical applications. We outline the challenges that AOT still faces to make in vivoimaging possible and what has been accomplished thus far, as well as possible future directions.
. [J]. Frontiers of Optoelectronics, 2017, 10(3): 211-238.
Jacqueline GUNTHER, Stefan ANDERSSON-ENGELS. Review of current methods of acousto-optical tomography for biomedical applications. Front. Optoelectron., 2017, 10(3): 211-238.
Wang L V. Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography. Disease Markers, 2003– 2004, 19(2–3): 123–138 https://doi.org/10.1155/2004/478079
pmid: 15096709
2
Brillouin L.Diffusion de la lumière et des rayons X par un corps transparent homogène. Influence de l’agitation thermique. Ann. Physique (Paris), 1922, 17(88–122): 21
3
Debye P, Sears F W. On the scattering of light by supersonic waves. Proceedings of the National Academy of Sciences of the United States of America, 1932, 18(6): 409–414 https://doi.org/10.1073/pnas.18.6.409
pmid: 16587705
4
Lucas R, Biquard P. Propriétés optique des milieux solides et liquides soumis aux vibrations élastiques ultra sonores. Journal of Physics, 1932, 71(10): 464–477
5
Marks F A, Tomlinson H W, Brooksby G W. Comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination. In: Proceedings of SPIE 1888, Photon Migration and Imaging in Random Media and Tissues. 1993, 500–510
6
Wang L, Jacques S L, Zhao X. Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media. Optics Letters, 1995, 20(6): 629–631 https://doi.org/10.1364/OL.20.000629
pmid: 19859278
Li C, Kim C, Lihong V W. Photoacoustic tomography and ultrasound-modulated optical tomography. In: Boas D A, Pitris C, Ramanujam N, eds. Handbook of Biomedical Optics. Boca Raton, Florida: CRC Press, 2011, 419–442
10
Resink S G, Boccara A C, Steenbergen W. State-of-the art of acousto-optic sensing and imaging of turbid media. Journal of Biomedical Optics, 2012, 17(4): 040901 https://doi.org/10.1117/1.JBO.17.4.040901
pmid: 22559674
11
Walther A, Rippe L, Lihong V W, Andersson-Engels S, Kröll S. Is optical imaging of oxygenation at heart depth possible? (submitted), 2017
12
Elson D S, Li R, Dunsby C, Eckersley R, Tang M X. Ultrasound-mediated optical tomography: a review of current methods. Interface Focus, 2011, 1(4): 632–648 https://doi.org/10.1098/rsfs.2011.0021
pmid: 22866234
Zhang H, Sabooni M, Rippe L, Kim C, Kröll S, Wang L V, Hemmer P R. Slow light for deep tissue imaging with ultrasound modulation. Applied Physics Letters, 2012, 100(13): 131102 https://doi.org/10.1063/1.3696307
pmid: 22509069
15
Suzuki Y, Lai P, Xu X, Wang L. High-sensitivity ultrasound-modulated optical tomography with a photorefractive polymer. Optics Letters, 2013, 38(6): 899–901 https://doi.org/10.1364/OL.38.000899
pmid: 23503253
16
Lai P, Suzuki Y, Xu X, Wang L V. Exploring ultrasound-modulated optical tomography at clinically useful depths using the photorefractive effect. In: Oraevsky A A, Wang L V, eds. Photons Plus Ultrasound: imaging and Sensing: Proceedings of SPIE. 2013, 85812X
17
Yao G, Wang L V. Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue. Applied Optics, 2000, 39(4): 659–664 https://doi.org/10.1364/AO.39.000659
pmid: 18337939
18
Jang M, Ruan H, Judkewitz B, Yang C. Model for estimating the penetration depth limit of the time-reversed ultrasonically encoded optical focusing technique. Optics Express, 2014, 22(5): 5787–5807 https://doi.org/10.1364/OE.22.005787
pmid: 24663917
19
Hussain A, Daoudi K, Hondebrink E, Steenbergen W. Mapping optical fluence variations in highly scattering media by measuring ultrasonically modulated backscattered light. Journal of Biomedical Optics, 2014, 19(6): 066002 https://doi.org/10.1117/1.JBO.19.6.066002
pmid: 24887744
20
Wang L V. Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model. Optics Letters, 2001, 26(15): 1191–1193 https://doi.org/10.1364/OL.26.001191
pmid: 18049559
21
Huynh N T, Hayes-Gill B R, Zhang F, Morgan S P. Ultrasound modulated imaging of luminescence generated within a scattering medium. Journal of Biomedical Optics, 2013, 18(2): 020505 https://doi.org/10.1117/1.JBO.18.2.020505
pmid: 23386195
Huynh N T, Ruan H, He D, Hayes-Gill B R, Morgan S P. Effect of object size and acoustic wavelength on pulsed ultrasound modulated fluorescence signals. Journal of Biomedical Optics, 2012, 17(7): 076008 https://doi.org/10.1117/1.JBO.17.7.076008
pmid: 22894491
24
Wang L V, Wu H. Biomedical Optics: Principles and Imaging. New Jersey: John Wiley & Sons, 2012
25
Sakadžić S, Wang L V. Ultrasonic modulation of multiply scattered coherent light: an analytical model for anisotropically scattering media. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2002, 66(2): 026603 https://doi.org/10.1103/PhysRevE.66.026603
pmid: 12241307
26
Yao G, Wang L V. Signal dependence and noise source in ultrasound-modulated optical tomography. Applied Optics, 2004, 43(6): 1320–1326 https://doi.org/10.1364/AO.43.001320
pmid: 15008535
27
Sakadžić S, Wang L V. Correlation transfer equation for ultrasound-modulated multiply scattered light. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2006, 74(3): 036618 https://doi.org/10.1103/PhysRevE.74.036618
pmid: 17025775
28
Sakadžić S, Wang L V. Correlation transfer equation for multiply scattered light modulated by an ultrasonic pulse. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2007, 24(9): 2797–2806 https://doi.org/10.1364/JOSAA.24.002797
pmid: 17767248
29
Sakadžić S, Wang L V. Modulation of multiply scattered coherent light by ultrasonic pulses: an analytical model. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(3): 036620 https://doi.org/10.1103/PhysRevE.72.036620
pmid: 16241605
30
Alerstam E, Svensson T, Andersson-Engels S. Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. Journal of Biomedical Optics, 2008, 13(6): 060504
31
Leung T S, Powell S.Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing unit. Journal of Biomedical Optics, 2010, 15(5): 055007
32
Powell S, Leung T S. Highly parallel Monte-Carlo simulations of the acousto-optic effect in heterogeneous turbid media. Journal of Biomedical Optics, 2012, 17(4): 045002 https://doi.org/10.1117/1.JBO.17.4.045002
pmid: 22559676
33
Adams M T, Cleveland R O, Roy R A. Modeling-based design and assessment of an acousto-optic guided high-intensity focused ultrasound system. Journal of Biomedical Optics, 2017, 22(1): 017001 https://doi.org/10.1117/1.JBO.22.1.017001
pmid: 28114454
34
Lu M Z, Wu Y P, Shi Y, Guan Y B, Guo X L, Wan M X. Monte Carlo simulation of scattered light with shear waves generated by acoustic radiation force for acousto-optic imaging. Chinese Physics Letters, 2012, 29(12): 124302 https://doi.org/10.1088/0256-307X/29/12/124302
35
Li Y J, Huang W J, Ma F C, Wang R, Lu M Z, Wan M X. A modified Monte Carlo model of speckle tracking of shear wave induced by acoustic radiation force for acousto-optic elasticity imaging. Chinese Physics Letters, 2016, 33(11): 114301 https://doi.org/10.1088/0256-307X/33/11/114301
36
Li S, Cheng Y, Song L, Eckersley R J, Elson D S, Tang M X. Tracking shear waves in turbid medium by light: theory, simulation, and experiment. Optics Letters, 2014, 39(6): 1597–1600 https://doi.org/10.1364/OL.39.001597
pmid: 24690847
37
Tsalach A, Schiffer Z, Ratner E, Breskin I, Zeitak R, Shechter R, Balberg M. Depth selective acousto-optic flow measurement. Biomedical Optics Express, 2015, 6(12): 4871–4886 https://doi.org/10.1364/BOE.6.004871
pmid: 26713201
38
Tsalach A, Metzger Y, Breskin I, Zeitak R, Shechter R. Ultrasound modulated light blood flow measurement using intensity autocorrelation function: a Monte-Carlo simulation. In: Proceedings of SPIE 8943, Photons Plus Ultrasound: Imaging and Sensing, 2014, 89433N
39
Hollmann J L, Horstmeyer R, Yang C, DiMarzio C A. Analysis and modeling of an ultrasound-modulated guide star to increase the depth of focusing in a turbid medium. Journal of Biomedical Optics, 2013, 18(2): 025004 https://doi.org/10.1117/1.JBO.18.2.025004
pmid: 23400416
40
Hollmann J L, Horstmeyer R, Yang C, DiMarzio C A. Diffusion model for ultrasound-modulated light. Journal of Biomedical Optics, 2014, 19(3): 035005 https://doi.org/10.1117/1.JBO.19.3.035005
pmid: 24638247
41
Fiolka R, Si K, Cui M. Parallel wavefront measurements in ultrasound pulse guided digital phase conjugation. Optics Express, 2012, 20(22): 24827–24834 https://doi.org/10.1364/OE.20.024827
pmid: 23187248
42
Chandran R S, Roy D, Kanhirodan R, Vasu R M, Devi C U. Ultrasound modulated optical tomography: Young’s modulus of the insonified region from measurement of natural frequency of vibration. Optics Express, 2011, 19(23): 22837–22850 https://doi.org/10.1364/OE.19.022837
pmid: 22109162
43
Chandran R S, Devaraj G, Kanhirodan R, Roy D, Vasu R M. Detection and estimation of liquid flow through a pipe in a tissue-like object with ultrasound-assisted diffuse correlation spectroscopy. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2015, 32(10): 1888–1897 https://doi.org/10.1364/JOSAA.32.001888
pmid: 26479942
44
Chandran R S, Sarkar S, Kanhirodan R, Roy D, Vasu R M. Diffusing-wave spectroscopy in an inhomogeneous object: local viscoelastic spectra from ultrasound-assisted measurement of correlation decay arising from the ultrasound focal volume. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2014, 90(1): 012303 https://doi.org/10.1103/PhysRevE.90.012303
pmid: 25122299
45
Yang Q, Xu X, Lai P, Xu D, Wang L V. Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution. Journal of Biomedical Optics, 2013, 18(11): 110502 https://doi.org/10.1117/1.JBO.18.11.110502
pmid: 24194060
46
Lai P, Roy R A, Murray T W. Quantitative characterization of turbid media using pressure contrast acousto-optic imaging. Optics Letters, 2009, 34(18): 2850–2852 https://doi.org/10.1364/OL.34.002850
pmid: 19756126
47
Murray T W, Lai P, Roy R A. Measuring tissue properties and monitoring therapeutic responses using acousto-optic imaging. Annals of Biomedical Engineering, 2012, 40(2): 474–485 https://doi.org/10.1007/s10439-011-0425-z
pmid: 22006427
48
Ruan H, Mather M L, Morgan S P. Pulse inversion ultrasound modulated optical tomography. Optics Letters, 2012, 37(10): 1658–1660 https://doi.org/10.1364/OL.37.001658
pmid: 22627528
49
Ruan H, Mather M L, Morgan S P. Pulsed ultrasound modulated optical tomography with harmonic lock-in holography detection. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2013, 30(7): 1409–1416 https://doi.org/10.1364/JOSAA.30.001409
pmid: 24323157
50
Ruan H, Mather M L, Morgan S P. Pulsed ultrasound modulated optical tomography utilizing the harmonic response of lock-in detection. Applied Optics, 2013, 52(19): 4755–4762 https://doi.org/10.1364/AO.52.004755
pmid: 23842276
51
Laudereau J B, Grabar A A, Tanter M, Gennisson J L, Ramaz F. Ultrafast acousto-optic imaging with ultrasonic plane waves. Optics Express, 2016, 24(4): 3774–3789 https://doi.org/10.1364/OE.24.003774
pmid: 26907033
52
Lai P, McLaughlan J R, Draudt A B, Murray T W, Cleveland R O, Roy R A. Real-time monitoring of high-intensity focused ultrasound lesion formation using acousto-optic sensing. Ultrasound in Medicine & Biology, 2011, 37(2): 239–252 https://doi.org/10.1016/j.ultrasmedbio.2010.11.004
pmid: 21208729
53
Ruan H, Jang M, Yang C. Optical focusing inside scattering media with time-reversed ultrasound microbubble encoded light. Nature Communications, 2015, 6: 8968 https://doi.org/10.1038/ncomms9968
pmid: 26597439
54
Ruan H, Mather M L, Morgan S P. Ultrasound modulated optical tomography contrast enhancement with non-linear oscillation of microbubbles. Quantitative Imaging in Medicine and Surgery, 2015, 5(1): 9–16
pmid: 25694948
55
Liu Y, Feshitan J A, Wei M Y, Borden M A, Yuan B. Ultrasound-modulated fluorescence based on fluorescent microbubbles. Journal of Biomedical Optics, 2014, 19(8): 085005 https://doi.org/10.1117/1.JBO.19.8.085005
pmid: 25104407
56
Li R, Elson D S, Dunsby C, Eckersley R, Tang M X. Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography. Optics Express, 2011, 19(8): 7299–7311 https://doi.org/10.1364/OE.19.007299
pmid: 21503041
57
Cheng Y, Li R, Li S, Dunsby C, Eckersley R J, Elson D S, Tang M X. Shear wave elasticity imaging based on acoustic radiation force and optical detection. Ultrasound in Medicine & Biology, 2012, 38(9): 1637–1645 https://doi.org/10.1016/j.ultrasmedbio.2012.04.022
pmid: 22749816
58
Cheng Y, Li S, Eckersley R J, Elson D S, Tang M X. Viscosity measurement based on shear-wave laser speckle contrast analysis. Journal of Biomedical Optics, 2013, 18(12): 121511 https://doi.org/10.1117/1.JBO.18.12.121511
pmid: 24357548
59
Cheng Y, Li S, Eckersley R J, Elson D S, Tang M X. Detecting tissue optical and mechanical properties with an ultrasound modulated optical imaging system in reflection detection geometry. Biomedical Optics Express, 2015, 6(1): 63–71 https://doi.org/10.1364/BOE.6.000063
pmid: 25657875
60
Li S, Cheng Y, Eckersley R J, Elson D S, Tang M X. Dual shear wave induced laser speckle contrast signal and the improvement in shear wave speed measurement. Biomedical Optics Express, 2015, 6(6): 1954–1962 https://doi.org/10.1364/BOE.6.001954
pmid: 26114021
61
Li J, Wang L V. Methods for parallel-detection-based ultrasound-modulated optical tomography. Applied Optics, 2002, 41(10): 2079–2084 https://doi.org/10.1364/AO.41.002079
pmid: 11936815
62
Bratchenia A, Molenaar R, Kooyman R P H. Towards quantitative acousto-optic imaging in tissue. Laser Physics, 2011, 21(3): 601–607 https://doi.org/10.1134/S1054660X11050033
63
Resink S G, Hondebrink E, Steenbergen W. Towards acousto-optic tissue imaging with nanosecond laser pulses. Optics Express, 2014, 22(3): 3564–3571 https://doi.org/10.1364/OE.22.003564
pmid: 24663646
64
Resink S G, Steenbergen W. Tandem-pulsed acousto-optics: an analytical framework of modulated high-contrast speckle patterns. Physics in Medicine and Biology, 2015, 60(11): 4371–4382 https://doi.org/10.1088/0031-9155/60/11/4371
pmid: 25985079
65
Resink S, Hondebrink E, Steenbergen W. Solving the speckle decorrelation challenge in acousto-optic sensing using tandem nanosecond pulses within the ultrasound period. Optics Letters, 2014, 39(22): 6486–6489 https://doi.org/10.1364/OL.39.006486
pmid: 25490500
66
Zhang Q, Mather M L, Morgan S P. Numerical investigation of the mechanisms of ultrasound-modulated bioluminescence tomography. IEEE Transactions on Bio-medical Engineering, 2015, 62(9): 2135–2143 https://doi.org/10.1109/TBME.2015.2405415
pmid: 25706504
67
Barjean K, Contreras K, Laudereau J B, Tinet É, Ettori D, Ramaz F, Tualle J M. Fourier transform acousto-optic imaging with a custom-designed CMOS smart-pixels array. Optics Letters, 2015, 40(5): 705–708 https://doi.org/10.1364/OL.40.000705
pmid: 25723412
68
Barjean K, Ramaz F, Tualle J M. Theoretical study of Fourier-transform acousto-optic imaging. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2016, 33(5): 854–862 https://doi.org/10.1364/JOSAA.33.000854
pmid: 27140883
69
Liu Y, Shen Y, Ma C, Shi J, Wang L V. Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media. Applied Physics Letters, 2016, 108(23): 231106 https://doi.org/10.1063/1.4953630
pmid: 27493275
70
Farahi S, Benoit E, Grabar A A, Huignard J P, Ramaz F. Time resolved three-dimensional acousto-optic imaging of thick scattering media. Optics Letters, 2012, 37(13): 2754–2756 https://doi.org/10.1364/OL.37.002754
pmid: 22743518
71
Jayet B, Huignard J P, Ramaz F. Fast wavefront adaptive holography in Nd:YVO4 for ultrasound optical tomography imaging. Optics Express, 2014, 22(17): 20622–20633 https://doi.org/10.1364/OE.22.020622
pmid: 25321267
72
À La Guillaume E B, Bortolozzo U, Huignard J P, Residori S, Ramaz F. Dynamic ultrasound modulated optical tomography by self-referenced photorefractive holography. Optics Letters, 2013, 38(3): 287–289 https://doi.org/10.1364/OL.38.000287
pmid: 23381413
73
Devaux F, Huignard J P, Ramaz F. Modelization and optimized speckle detection scheme in photorefractive self-referenced acousto-optic imaging. Optics Express, 2014, 22(9): 10682–10692 https://doi.org/10.1364/OE.22.010682
pmid: 24921769
74
Laudereau J B, À La Guillaume E B, Servois V, Mariani P, Grabar A A, Tanter M, Gennisson J L, Ramaz F. Multi-modal acousto-optic/ultrasound imaging of ex vivo liver tumors at 790 nm using a Sn2P2S6 wavefront adaptive holographic setup. Journal of Biophotonics, 2015, 8(5): 429–436 https://doi.org/10.1002/jbio.201400071
pmid: 25236956
75
Xu X, Liu H, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photonics, 2011, 5(3): 154–157 https://doi.org/10.1038/nphoton.2010.306
pmid: 21532925
76
Liu H, Xu X, Lai P, Wang L V. Time-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths. Journal of Biomedical Optics, 2011, 16(8): 086009
77
Lai P, Xu X, Liu H, Suzuki Y, Wang L V. Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media. Journal of Biomedical Optics, 2011, 16(8): 080505 https://doi.org/10.1117/1.3609001
pmid: 21895305
78
Suzuki Y, Xu X, Lai P, Wang L V. Energy enhancement in time-reversed ultrasonically encoded optical focusing using a photorefractive polymer. Journal of Biomedical Optics, 2012, 17(8): 080507 https://doi.org/10.1117/1.JBO.17.8.080507
pmid: 23224158
79
Liu Y, Lai P, Ma C, Xu X, Grabar A A, Wang L V. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nature Communications, 2015, 6: 5904 https://doi.org/10.1038/ncomms6904
pmid: 25556918
80
Liu Y, Ma C, Shen Y, Wang L V. Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media. Optics Letters, 2016, 41(7): 1321–1324 https://doi.org/10.1364/OL.41.001321
pmid: 27192226
81
Si K, Fiolka R, Cui M. Fluorescence imaging beyond the ballistic regime by ultrasound pulse guided digital phase conjugation. Nature Photonics, 2012, 6(10): 657–661 https://doi.org/10.1038/nphoton.2012.205
pmid: 23241552
82
Wang Y M, Judkewitz B, Dimarzio C A, Yang C. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nature Communications, 2012, 3: 928 https://doi.org/10.1038/ncomms1925
pmid: 22735456
83
Lai P, Suzuki Y, Xu X, Wang L V. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media. Laser Physics Letters, 2013, 10(7): 075604 https://doi.org/10.1088/1612-2011/10/7/075604
pmid: 24465244
84
Tay J W, Lai P, Suzuki Y, Wang L V. Ultrasonically encoded wavefront shaping for focusing into random media. Scientific Reports, 2014, 4(1): 3918 https://doi.org/10.1038/srep03918
pmid: 24472822
85
Suzuki Y, Tay J W, Yang Q, Wang L V. Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation. Optics Letters, 2014, 39(12): 3441–3444 https://doi.org/10.1364/OL.39.003441
pmid: 24978506
86
Si K, Fiolka R, Cui M. Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy. Scientific Reports, 2012, 2: 748 https://doi.org/10.1038/srep00748
pmid: 23087813
87
Judkewitz B, Wang Y M, Horstmeyer R, Mathy A, Yang C. Speckle-scale focusing in the diffusive regime with time-reversal of variance-encoded light (TROVE). Nature Photonics, 2013, 7(4): 300–305 https://doi.org/10.1038/nphoton.2013.31
pmid: 23814605
88
Ruan H, Jang M, Judkewitz B, Yang C. Iterative time-reversed ultrasonically encoded light focusing in backscattering mode. Scientific Reports, 2014, 4(1): 7156 https://doi.org/10.1038/srep07156
pmid: 25412687
89
Xu X, Kothapalli S-R, Liu H, Wang L V. Spectral hole burning for ultrasound-modulated optical tomography of thick tissue. Journal of Biomedical Optics, 2010, 15(6): 066018
90
McAuslan D, Taylor L, Longdell J. Using quantum memory techniques for optical detection of ultrasound. Applied Physics Letters, 2012, 101(19): 191112 https://doi.org/10.1063/1.4766341
91
Taylor L R, McAuslan D L, Longdell J J. Optical detection of ultrasound using AFC-based quantum memory technique in cryogenic rare earth ion doped crystals. In: Proceedings of SPIE 8581, Photons Plus Ultrasound: Imaging and Sensing. 2013, 858117
92
Taylor L R, Doronin A, Meglinski I, Longdell J J. Acousto-optic imaging using quantum memories in cryogenic rare earth ion doped crystals. In: Proceedings of SPIE 8943, Photons Plus Ultrasound: Imaging and Sensing. 2014, 89431D
93
Lesaffre M, Farahi S, Gross M, Delaye P, Boccara C, Ramaz F. Acousto-optical coherence tomography using random phase jumps on ultrasound and light. Optics Express, 2009, 17(20): 18211–18218 https://doi.org/10.1364/OE.17.018211
pmid: 19907612
94
Lesaffre M, Farahi S, Boccara A C, Ramaz F, Gross M. Theoretical study of acousto-optical coherence tomography using random phase jumps on ultrasound and light. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2011, 28(7): 1436–1444 https://doi.org/10.1364/JOSAA.28.001436
pmid: 21734743
95
Lesaffre M, Farahi S, Ramaz F, Gross M. Experimental study of z resolution in acousto-optical coherence tomography using random phase jumps on ultrasound and light. Applied Optics, 2013, 52(5): 949–957 https://doi.org/10.1364/AO.52.000949
pmid: 23400056
96
A La Guillaume E B, Farahi S, Bossy E, Gross M, Ramaz F. Acousto-optical coherence tomography with a digital holographic detection scheme. Optics Letters, 2012, 37(15): 3216–3218 https://doi.org/10.1364/OL.37.003216
pmid: 22859137
97
Staley J, Hondebrink E, Peterson W, Steenbergen W. Photoacoustic guided ultrasound wavefront shaping for targeted acousto-optic imaging. Optics Express, 2013, 21(25): 30553–30562 https://doi.org/10.1364/OE.21.030553
pmid: 24514632
98
Daoudi K, Hussain A, Hondebrink E, Steenbergen W. Correcting photoacoustic signals for fluence variations using acousto-optic modulation. Optics Express, 2012, 20(13): 14117–14129 https://doi.org/10.1364/OE.20.014117
pmid: 22714476
99
Hussain A, Petersen W, Staley J, Hondebrink E, Steenbergen W. Quantitative blood oxygen saturation imaging using combined photoacoustics and acousto-optics. Optics Letters, 2016, 41(8): 1720–1723 https://doi.org/10.1364/OL.41.001720
pmid: 27082328
100
Schytz H W, Guo S, Jensen L T, Kamar M, Nini A, Gress D R, Ashina M. A new technology for detecting cerebral blood flow: a comparative study of ultrasound tagged NIRS and 133Xe-SPECT. Neurocritical Care, 2012, 17(1): 139–145 https://doi.org/10.1007/s12028-012-9720-2
pmid: 22610823
Tsalach A, Ratner E, Lokshin S, Silman Z, Breskin I, Budin N, Kamar M. Cerebral autoregulation real-time monitoring. PLoS One, 2016, 11(8): e0161907 https://doi.org/10.1371/journal.pone.0161907
pmid: 27571474
103
Zhu L, Xie W, Li Z, Li H. Experimental study of ultrasound-modulated scattering light using different frequencies ultrasound probes. Chinese Optics Letters, 2014, 12(7): 071701–071703 https://doi.org/10.3788/COL201412.071701
104
Cui M, Yang C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Optics Express, 2010, 18(4): 3444–3455 https://doi.org/10.1364/OE.18.003444
pmid: 20389354
105
Singh M S, Kanhirodan R, Vasu R M, Roy D. Ultrasound modulation of coherent light in a multiple-scattering medium: experimental verification of nonzero average phase carried by light. Biomedical Optics Express, 2012, 3(9): 2100–2110 https://doi.org/10.1364/BOE.3.002100
pmid: 23024904
106
Li J, Ku G, Wang L V. Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles. Applied Optics, 2002, 41(28): 6030–6035 https://doi.org/10.1364/AO.41.006030
pmid: 12371565
107
Zhu L, Lin J, Lin B, Li H. Noninvasive blood glucose measurement by ultrasound-modulated optical technique. Chinese Optics Letters, 2013, 11(2): 021701–021705 https://doi.org/10.3788/COL201311.021701
108
Gross M, Goy P, Al-Koussa M. Shot-noise detection of ultrasound-tagged photons in ultrasound-modulated optical imaging. Optics Letters, 2003, 28(24): 2482–2484 https://doi.org/10.1364/OL.28.002482
pmid: 14690121
109
Gross M. Speckle decorrelation in ultrasound-modulated optical tomography made by heterodyne holography. 2016, arXiv preprint arXiv:1606.02902,
110
Gross M, Ramaz F, Forget B, Atlan M, Boccara A, Delaye P, Roosen G. Theoretical description of the photorefractive detection of the ultrasound modulated photons in scattering media. Optics Express, 2005, 13(18): 7097–7112 https://doi.org/10.1364/OPEX.13.007097
pmid: 19498733
111
Tay S, Blanche P A, Voorakaranam R, Tunç A V, Lin W, Rokutanda S, Gu T, Flores D, Wang P, Li G, St Hilaire P, Thomas J, Norwood R A, Yamamoto M, Peyghambarian N. An updatable holographic three-dimensional display. Nature, 2008, 451(7179): 694–698 https://doi.org/10.1038/nature06596
pmid: 18256667
Ma C, Xu X, Wang L V. Analog time-reversed ultrasonically encoded light focusing inside scattering media with a 33000× optical power gain. Scientific Reports, 2015, 5(1): 8896 https://doi.org/10.1038/srep08896
pmid: 25753905
115
Jayet B, Huignard J P, Ramaz F. Optical phase conjugation in Nd:YVO4 for acousto-optic detection in scattering media. Optics Letters, 2013, 38(8): 1256–1258 https://doi.org/10.1364/OL.38.001256
pmid: 23595450
116
Khurgin J B. Slow light in various media: a tutorial. Advances in Optics and Photonics, 2010, 2(3): 287–318 https://doi.org/10.1364/AOP.2.000287
117
Li Y, Zhang H, Kim C, Wagner K H, Hemmer P, Wang L V. Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter. Applied Physics Letters, 2008, 93(1): 011111 https://doi.org/10.1063/1.2952489
pmid: 19079748
118
Li Y, Hemmer P, Kim C, Zhang H, Wang L V. Detection of ultrasound-modulated diffuse photons using spectral-hole burning. Optics Express, 2008, 16(19): 14862–14874 https://doi.org/10.1364/OE.16.014862
pmid: 18795023
119
Racheli N, Ron A, Metzger Y, Breskin I, Enden G, Balberg M, Shechter R. Non-invasive blood flow measurements using ultrasound modulated diffused light. In: Proceedings of SPIE 8223, Photons Plus Ultrasound: Imaging and Sensing. 2012, 82232A
120
Ron A, Racheli N, Breskin I, Metzger Y, Silman Z, Kamar M, Nini A, Shechter R, Balberg M. Measuring tissue blood flow using ultrasound modulated diffused light. In: Proceedings of SPIE 8223, Photons Plus Ultrasound: Imaging and Sensing. 2012, 82232J
121
Rosenthal G, Furmanov A, Itshayek E, Shoshan Y, Singh V. Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury. Journal of Neurosurgery, 2014, 120(4): 901–907 https://doi.org/10.3171/2013.12.JNS131089
pmid: 24484228
122
Schwarz M, Rivera G, Hammond M, Silman Z, Jackson K, Kofke W A. Acousto-optic cerebral blood flow monitoring during induction of anesthesia in humans. Neurocritical Care, 2016, 24(3): 436–441 https://doi.org/10.1007/s12028-015-0201-2
pmid: 26399247
123
Hori D, Hogue C, Adachi H, Max L, Price J, Sciortino C, Zehr K, Conte J, Cameron D, Mandal K. Perioperative optimal blood pressure as determined by ultrasound tagged near infrared spectroscopy and its association with postoperative acute kidney injury in cardiac surgery patients. Interactive Cardiovascular and Thoracic Surgery, 2016, 22(4): 445–451 https://doi.org/10.1093/icvts/ivv371
pmid: 26763042
124
Hori D, Hogue C W Jr, Shah A, Brown C, Neufeld K J, Conte J V, Price J, Sciortino C, Max L, Laflam A, Adachi H, Cameron D E, Mandal K. Cerebral autoregulation monitoring with ultrasound-tagged near-infrared spectroscopy in cardiac surgery patients. Anesthesia and Analgesia, 2015, 121(5): 1187–1193 https://doi.org/10.1213/ANE.0000000000000930
pmid: 26334746
125
Powell S, Leung T S. Linear reconstruction of absorption perturbations in coherent ultrasound-modulated optical tomography. Journal of Biomedical Optics, 2013, 18(12): 126020 https://doi.org/10.1117/1.JBO.18.12.126020
pmid: 24381950
126
Powell S, Leung T S. Quantitative reconstruction of absorption and scattering coefficients in ultrasound-modulated optical tomography. In: Proceedings of SPIE 8943, Photons Plus Ultrasound: Imaging and Sensing. 2014, 89434X–89434X–89411
127
Powell S, Arridge S R, Leung T S. Gradient-based quantitative image reconstruction in ultrasound-modulated optical tomography: first harmonic measurement type in a linearised diffusion formulation. IEEE Transactions on Medical Imaging, 2016, 35(2): 456–467 https://doi.org/10.1109/TMI.2015.2478742
pmid: 26390449
Bal G, Schotland J C. Ultrasound-modulated bioluminescence tomography. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2014, 89(3): 031201 https://doi.org/10.1103/PhysRevE.89.031201
pmid: 24730782
131
Bal G, Chung F J, Schotland J C. Ultrasound modulated bioluminescence tomography and controllability of the radiative transport equation. SIAM Journal on Mathematical Analysis, 2016, 48(2): 1332–1347 https://doi.org/10.1137/15M1026262
132
Ammari H, Bossy E, Garnier J, Nguyen L, Seppecher L. A reconstruction algorithm for ultrasound-modulated diffuse optical tomography. Proceedings of the American Mathematical Society, 2014, 142(9): 3221–3236 https://doi.org/10.1090/S0002-9939-2014-12090-9
133
Ammari H, Garnier J, Nguyen L H, Seppecher L. Reconstruction of a piecewise smooth absorption coefficient by an acousto-optic process. Communications in Partial Differential Equations, 2013, 38(10): 1737–1762 https://doi.org/10.1080/03605302.2013.803483
134
Ammari H, Nguyen L H, Seppecher L. Reconstruction and stability in acousto-optic imaging for absorption maps with bounded variation. Journal of Functional Analysis, 2014, 267(11): 4361–4398 https://doi.org/10.1016/j.jfa.2014.09.029
135
Huynh N T, He D, Hayes-Gill B R, Crowe J A, Walker J G, Mather M L, Rose F R, Parker N G, Povey M J, Morgan S P. Application of a maximum likelihood algorithm to ultrasound modulated optical tomography. Journal of Biomedical Optics, 2012, 17(2): 026014 https://doi.org/10.1117/1.JBO.17.2.026014
pmid: 22463046
136
Allmaras M, Bangerth W. Reconstructions in ultrasound modulated optical tomography. Journal of Inverse and Ill-Posed Problems, 2011, 19(6): 801–823 https://doi.org/10.1515/jiip.2011.050
137
Bratchenia A, Molenaar R, van Leeuwen T G, Kooyman R P H. Acousto-optic-assisted diffuse optical tomography. Optics Letters, 2011, 36(9): 1539–1541 https://doi.org/10.1364/OL.36.001539
pmid: 21540920
138
Varma H M, Mohanan K P, Hyvönen N, Nandakumaran A K, Vasu R M. Ultrasound-modulated optical tomography: recovery of amplitude of vibration in the insonified region from boundary measurement of light correlation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2011, 28(11): 2322–2331 https://doi.org/10.1364/JOSAA.28.002322
pmid: 22048300
139
Mohanan K P, Nandakumaran A K, Roy D, Vasu R M. Ultrasound-modulated optical tomography: direct recovery of elasticity distribution from experimentally measured intensity autocorrelation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2015, 32(5): 955–963 https://doi.org/10.1364/JOSAA.32.000955
pmid: 26366922
140
Li J, Wang L V. Ultrasound-modulated optical computed tomography of biological tissues. Applied Physics Letters, 2004, 84(9): 1597–1599 https://doi.org/10.1063/1.1651330