1. Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China 2. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
Lead halide perovskites, with high photoluminescence efficiency and narrow-band emission, are promising materials for display and lighting. However, the lead toxicity and environmental sensitivity hinder their potential applications. Herein, a new antimony-doped lead-free inorganic perovskites variant Cs2SnCl6:xSb is designed and synthesized. The perovskite variant Cs2SnCl6:xSb exhibits a broadband orange-red emission, with a photoluminescence quantum yield (PLQY) of 37%. The photoluminescence of Cs2SnCl6:xSb is caused by the ionoluminescence of Sb3+ within Cs2SnCl6 matrix, which is verified by temperature dependent photoluminescence (PL) and PL decay measurements. In addition, the all inorganic structure renders Cs2SnCl6:xSb with excellent thermal and water stability. Finally, a white light-emitting diode (white-LED) is fabricated by assembling Cs2SnCl6:0.59%Sb, Cs2SnCl6:2.75%Bi and Ba2Sr2SiO4:Eu2+ onto the commercial UV LED chips, and the color rendering index (CRI) reaches 81.
J Burschka, N Pellet, S J Moon, R Humphry-Baker, P Gao, M K Nazeeruddin, M Grätzel. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316–319 https://doi.org/10.1038/nature12340
pmid: 23842493
2
L Zhang, X Yang, Q Jiang, P Wang, Z Yin, X Zhang, H Tan, Y M Yang, M Wei, B R Sutherland, E H Sargent, J You. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications, 2017, 8: 15640 https://doi.org/10.1038/ncomms15640
pmid: 28589960
3
H Cho, S H Jeong, M H Park, Y H Kim, C Wolf, C L Lee, J H Heo, A Sadhanala, N Myoung, S Yoo, S H Im, R H Friend, T W Lee. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350(6265): 1222–1225 https://doi.org/10.1126/science.aad1818
pmid: 26785482
4
Z K Tan, R S Moghaddam, M L Lai, P Docampo, R Higler, F Deschler, M Price, A Sadhanala, L M Pazos, D Credgington, F Hanusch, T Bein, H J Snaith, R H Friend. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9(9): 687–692 https://doi.org/10.1038/nnano.2014.149
pmid: 25086602
5
X Li, Y Wu, S Zhang, B Cai, Y Gu, J Song, H Zeng. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials, 2016, 26(15): 2584 https://doi.org/10.1002/adfm.201670096
6
H Zhang, X Wang, Q Liao, Z Xu, H Li, L Zheng, H Fu. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging. Advanced Functional Materials, 2017, 27(7): 1604382 https://doi.org/10.1002/adfm.201604382
7
R Ge, F Qin, L Hu, S Xiong, Y Zhou. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells. Frontiers of Optoelectronics, 2018, 11(4): 360–366 https://doi.org/10.1007/s12200-018-0847-4
8
K Lin, J Xing, L N Quan, F P G de Arquer, X Gong, J Lu, L Xie, W Zhao, D Zhang, C Yan, W Li, X Liu, Y Lu, J Kirman, E H Sargent, Q Xiong, Z Wei. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562(7726): 245–248 https://doi.org/10.1038/s41586-018-0575-3
pmid: 30305741
9
Y Cao, N Wang, H Tian, J Guo, Y Wei, H Chen, Y Miao, W Zou, K Pan, Y He, H Cao, Y Ke, M Xu, Y Wang, M Yang, K Du, Z Fu, D Kong, D Dai, Y Jin, G Li, H Li, Q Peng, J Wang, W Huang. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249–253 https://doi.org/10.1038/s41586-018-0576-2
pmid: 30305742
10
S A Veldhuis, P P Boix, N Yantara, M Li, T C Sum, N Mathews, S G Mhaisalkar. Perovskite materials for light-emitting diodes and lasers. Advanced Materials, 2016, 28(32): 6804–6834 https://doi.org/10.1002/adma.201600669
pmid: 27214091
11
I Lignos, S Stavrakis, G Nedelcu, L Protesescu, A J deMello, M V Kovalenko. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Letters, 2016, 16(3): 1869–1877 https://doi.org/10.1021/acs.nanolett.5b04981
pmid: 26836149
12
J Song, J Li, L Xu, J Li, F Zhang, B Han, Q Shan, H Zeng. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Advanced Materials, 2018, 30(30): e1800764 https://doi.org/10.1002/adma.201800764
pmid: 29888521
13
L Protesescu, S Yakunin, M I Bodnarchuk, F Krieg, R Caputo, C H Hendon, R X Yang, A Walsh, M V Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015, 15(6): 3692–3696 https://doi.org/10.1021/nl5048779
pmid: 25633588
14
F Zhang, H Zhong, C Chen, X G Wu, X Hu, H Huang, J Han, B Zou, Y Dong. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 2015, 9(4): 4533–4542 https://doi.org/10.1021/acsnano.5b01154
pmid: 25824283
15
W Pan, H Wu, J Luo, Z Deng, C Ge, C Chen, X Jiang, W Yin, G Niu, L Zhu, L Yin, Y Zhou, Q Xie, X Ke, M Sui, J Tang. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726–732 https://doi.org/10.1038/s41566-017-0012-4
16
Y Wei, H Xiao, Z Xie, S Liang, S Liang, X Cai, S Huang, A A Al Kheraif, H S Jang, Z Cheng, J Lin. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes. Advanced Optical Materials, 2018, 6(11): 1701343 https://doi.org/10.1002/adom.201701343
17
S Huang, B Wang, Q Zhang, Z Li, A Shan, L Li. Postsynthesis potassium-modification method to improve stability of CsPbBr3 perovskite nanocrystals. Advanced Optical Materials, 2018, 6(6): 1701106 https://doi.org/10.1002/adom.201701106
18
S Yang, W Fu, Z Zhang, H Chen, C Li. Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(23): 11462–11482 https://doi.org/10.1039/C7TA00366H
19
M Leng, Z Chen, Y Yang, Z Li, K Zeng, K Li, G Niu, Y He, Q Zhou, J Tang. Lead-free, blue emitting bismuth halide perovskite quantum dots. Angewandte Chemie, 2016, 55(48): 15012–15016 https://doi.org/10.1002/anie.201608160
pmid: 27791304
20
J Zhang, Y Yang, H Deng, U Farooq, X Yang, J Khan, J Tang, H Song. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano, 2017, 11(9): 9294–9302 https://doi.org/10.1021/acsnano.7b04683
pmid: 28880532
21
M Leng, Y Yang, K Zeng, Z Chen, Z Tan, S Li, J Li, B Xu, D Li, M P Hautzinger, Y Fu, T Zhai, L Xu, G Niu, S Jin, J Tang. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Advanced Functional Materials, 2018, 28(1): 1704446 https://doi.org/10.1002/adfm.201704446
22
M Leng, Y Yang, Z Chen, W Gao, J Zhang, G Niu, D Li, H Song, J Zhang, S Jin, J Tang. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Letters, 2018, 18(9): 6076–6083 https://doi.org/10.1021/acs.nanolett.8b03090
pmid: 30107746
23
C Zhou, H Lin, Y Tian, Z Yuan, R Clark, B Chen, L J van de Burgt, J C Wang, Y Zhou, K Hanson, Q J Meisner, J Neu, T Besara, T Siegrist, E Lambers, P Djurovich, B Ma. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chemical Science, 2018, 9(3): 586–593 https://doi.org/10.1039/C7SC04539E
pmid: 29629122
24
C Zhou, M Worku, J Neu, H Lin, Y Tian, S Lee, Y Zhou, D Han, S Chen, A Hao, P I Djurovich, T Siegrist, M H Du, B Ma. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency. Chemistry of Materials, 2018, 30(7): 2374–2378 https://doi.org/10.1021/acs.chemmater.8b00129
25
W Liu, Q Lin, H Li, K Wu, I Robel, J M Pietryga, V I Klimov. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. Journal of the American Chemical Society, 2016, 138(45): 14954–14961 https://doi.org/10.1021/jacs.6b08085
pmid: 27756131
26
Q Hu, Z Li, Z Tan, H Song, C Ge, G Niu, J Han, J Tang. Rare earth ion-doped CsPbBr3 nanocrystals. Advanced Optical Materials, 2018, 6(2): 1700864 https://doi.org/10.1002/adom.201700864
27
C Zhou, Y Tian, O Khabou, M Worku, Y Zhou, J Hurley, H Lin, B Ma. Manganese-doped one-dimensional organic lead bromide perovskites with bright white emissions. ACS Applied Materials & Interfaces, 2017, 9(46): 40446–40451 https://doi.org/10.1021/acsami.7b12456
pmid: 29083158
28
Z Tan, J Li, C Zhang, Z Li, Q Hu, Z Xiao, T Kamiya, H Hosono, G Niu, E Lifshitz, Y Cheng, J Tang. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Advanced Functional Materials, 2018, 28(29): 1801131 https://doi.org/10.1002/adfm.201801131
29
D Costa, P Marcus. Electronic core levels of hydroxyls at the surface of chromia related to their XPS O 1s signature: a DFT+ U study. Surface Science, 2010, 604(11–12): 932–938 https://doi.org/10.1016/j.susc.2010.02.023
30
S M Hwang, J Kim, Y Kim, Y Kim. Na-ion storage performance of amorphous Sb2S3 nanoparticles: anode for Na-ion batteries and seawater flow batteries. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(46): 17946–17951 https://doi.org/10.1039/C6TA07838A
31
X Yang, J Ma, H Wang, Y Chai, R Yuan. Partially reduced Sb/Sb2O3@C spheres with enhanced electrochemical performance for lithium ion storage. Materials Chemistry and Physics, 2018, 213: 208–212 https://doi.org/10.1016/j.matchemphys.2018.04.027
32
A Ali, S K Hasanain, T Ali, M Sultan. Improvement of antimony sulfide photo bsorber performance by interface modification in Sb2S3-ZnO hybrid nanostructures. Physica E, Low-Dimensional Systems and Nanostructures, 2017, 87: 20–26 https://doi.org/10.1016/j.physe.2016.11.002
E W J L Oomen, G J Dirksen, W M A Smit, G Blasse. On the luminescence of the Sb3+ ion in Cs2NaMBr6 (M=Sc,Y,La). Journal of Physics C. Solid State Physics, 1987, 20(8): 1161–1171 https://doi.org/10.1088/0022-3719/20/8/017
35
E W J L Oomen, W M A Smit, G Blasse. On the luminescence of Sb3+ in Cs2NaMCl6 (with M=Sc,Y,La): a model system for the study of trivalent s2 ions. Journal of Physics C. Solid State Physics, 1986, 19(17): 3263–3272 https://doi.org/10.1088/0022-3719/19/17/020
36
R Reisfeld, L Boehm, B Barnett. Luminescence and nonradiative relaxation of Pb2+, Sn2+, Sb3+, and Bi3+ in oxide glasses. Journal of Solid State Chemistry, 1975, 15(2): 140–150 https://doi.org/10.1016/0022-4596(75)90237-6
37
G Zhou, X Jiang, J Zhao, M Molokeev, Z Lin, Q Liu, Z Xia. Two-dimensional-layered perovskite ALaTa2O7:Bi3+ (A= K and Na) phosphors with versatile structures and tunable photoluminescence. ACS Applied Materials & Interfaces, 2018, 10(29): 24648–24655 https://doi.org/10.1021/acsami.8b08129
pmid: 29969555
38
E W J L Oomen, G J Dirksen. Crystal growth and luminescence of Sb3+-doped Cs2 NaMCl6 (M= Sc, Y, La). Materials Research Bulletin, 1985, 20(4): 453–457 https://doi.org/10.1016/0025-5408(85)90013-3
39
G Blasse, B Grabmaier. Luminescent Materials. Berlin: Springer, 1994
40
M Kulbak, S Gupta, N Kedem, I Levine, T Bendikov, G Hodes, D Cahen. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. Journal of Physical Chemistry Letters, 2016, 7(1): 167–172 https://doi.org/10.1021/acs.jpclett.5b02597
pmid: 26700466