Hong–Ou–Mandel (HOM) interference is one of the most important experimental phenomena in quantum optics. It has drawn considerable attention with respect to quantum cryptography and quantum communication because of the advent of the measurement device independent (MDI) quantum key distribution (QKD) protocol. Here, we realize HOM interference, having a visibility of approximately 38.1%, using two independent heralded single-photon sources (HSPSs). The HOM interference between two independent HSPSs is a core technology for realizing the long-distance MDI QKD protocol, the quantum coin-tossing protocol, and other quantum cryptography protocols.
D Bouwmeester, J W Pan, K Mattle, M Eibl, H Weinfurter, A Zeilinger. Experimental quantum teleportation. Nature, 1997, 390(6660): 575–579 https://doi.org/10.1038/37539
3
H J Briegel, W Dür, J I Cirac, P Zoller. Quantum repeaters: the role of imperfect local operations in quantum communication. Physical Review Letters, 1998, 81(26): 5932–5935
4
E Knill, R Laflamme, G J Milburn. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409(6816): 46–52 https://doi.org/10.1038/35051009
pmid: 11343107
5
C K Hong, Z Y Ou, L Mandel. Measurement of subpicosecond time intervals between two photons by interference. Physical Review Letters, 1987, 59(18): 2044–2046 https://doi.org/10.1103/PhysRevLett.59.2044
pmid: 10035403
6
J G Rarity, P R Tapster, R Loudon. Non-classical interference between independent sources. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(7): S171–S175 https://doi.org/10.1088/1464-4266/7/7/007
7
R Kaltenbaek, B Blauensteiner, M Zukowski, M Aspelmeyer, A Zeilinger. Experimental interference of independent photons. Physical Review Letters, 2006, 96(24): 240502
8
J Beugnon, M P Jones, J Dingjan, B Darquié, G Messin, A Browaeys, P Grangier. Quantum interference between two single photons emitted by independently trapped atoms. Nature, 2006, 440(7085): 779–782 https://doi.org/10.1038/nature04628
pmid: 16598253
9
A J Bennett, R B Patel, C A Nicoll, D A Ritchie, A J Shields. Interference of dissimilar photon sources. Nature Physics, 2009, 5(10): 715–717 https://doi.org/10.1038/nphys1373
10
C H Bennet, G Brassard. Quantum Cryptography: Public-Key Distribution and Tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore: IEEE Press, 1984, 175–179
11
C M Zhang, M Li, J Z Huang, H W Li, F Y Li, C Wang, Z Q Yin, W Chen, Z F Han, P Treeviriyanupab, K Sripimanwat. Fast implementation of length-adaptive privacy amplification in quantum key distribution. Chinese Physics B, 2014, 23(9): 090310 https://doi.org/10.1088/1674-1056/23/9/090310
12
C M Zhang, X T Song, P Treeviriyanupab, M Li, C Wang, H W Li, Z Q Yin, W Chen, Z F Han. Delayed error verification in quantum key distribution. Chinese Science Bulletin, 2014, 59(23): 2825–2828 https://doi.org/10.1007/s11434-014-0446-8
13
M Li, T Patcharapong, C M Zhang, Z Q Yin, W Chen, Z F Han. Efficient error estimation in quantum key distribution. Chinese Physics B, 2015, 24(1): 010302 https://doi.org/10.1088/1674-1056/24/1/010302
14
S Wang, D Y He, Z Q Yin, F Y Lu, C H Cui, W Chen, Z Zhou, G C Guo, Z F Han. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Physical Review X, 2019, 9(2): 021046 https://doi.org/10.1103/PhysRevX.9.021046
15
Y P Li, W Chen, F X Wang, Z Q Yin, L Zhang, H Liu, S Wang, D Y He, Z Zhou, G C Guo, Z F Han. Experimental realization of a reference-frame-independent decoy BB84 quantum key distribution based on Sagnac interferometer. Optics Letters, 2019, 44(18): 4523–4526 https://doi.org/10.1364/OL.44.004523
pmid: 31517921
16
F Y Lu, Z Q Yin, C H Cui, G J Fan-Yuan, R Wang, S Wang, W Chen, D Y He, W Huang, B J Xu, G C Guo, Z F Han. Improving the performance of twin-field quantum key distribution. Physical Review A, 2019, 100(2): 022306 https://doi.org/10.1103/PhysRevA.100.022306
T Ferreira da Silva, D Vitoreti, G B Xavier, G C do Amaral, G P Temporão, J P von der Weid. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Physical Review A, 2013, 88(5): 052303 https://doi.org/10.1103/PhysRevA.88.052303
19
A Rubenok, J A Slater, P Chan, I Lucio-Martinez, W Tittel. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Physical Review Letters, 2013, 111(13): 130501 https://doi.org/10.1103/PhysRevLett.111.130501
pmid: 24116757
20
Y Liu, T Y Chen, L J Wang, H Liang, G L Shentu, J Wang, K Cui, H L Yin, N L Liu, L Li, X Ma, J S Pelc, M M Fejer, C Z Peng, Q Zhang, J W Pan. Experimental measurement-device-independent quantum key distribution. Physical Review Letters, 2013, 111(13): 130502 https://doi.org/10.1103/PhysRevLett.111.130502
pmid: 24116758
21
Z Tang, Z Liao, F Xu, B Qi, L Qian, H K Lo. Experimental demonstration of polarization encoding measurement-device- independent quantum key distribution. Physical Review Letters, 2014, 112(19): 190503 https://doi.org/10.1103/PhysRevLett.112.190503
pmid: 24877922
22
H Chen, X B An, J Wu, Z Q Yin, S Wang, W Chen, Z F Han. Hong–Ou–Mandel interference with two independent weak coherent states. Chinese Physics B, 2016, 25(2): 020305 https://doi.org/10.1088/1674-1056/25/2/020305
23
Q Wang, W Chen, G Xavier, M Swillo, T Zhang, S Sauge, M Tengner, Z F Han, G C Guo, A Karlsson. Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Physical Review Letters, 2008, 100(9): 090501 https://doi.org/10.1103/PhysRevLett.100.090501
pmid: 18352685
24
M Zukowski, A Zeilinger, H Weinfurter. Entangling photons radiated by independent pulsed sourcesa. Annals of the New York Academy of Sciences, 1995, 755(1): 91–102 https://doi.org/10.1111/j.1749-6632.1995.tb38959.x