Preparation of shape-controlling VO2(M/R) nanoparticles via one-step hydrothermal synthesis
Yuchao LI1,2, Fengyu KONG3, Bin WANG4, Yanhua ZHAO2, Zuankai WANG1,2()
1. Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China 2. Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China 3. Ningbo University of Technology, Ningbo 315211, China 4. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
In this study, we developed a facile one-step hydrothermal process that allows to synthesize high-purity VO2(M/R) nanoparticles with various morphologies such as nanorods, nanogranules, nanoblocks, and nanospheres. W dopants are successfully implanted in VO2(M/R) unit cells with high doping efficiency, which allows to regulate the size, morphology, and phase of obtained nanoparticles. The underlying regulation mechanism is presented in detail to reveal how hydrothermal products vary with W doping contents, which provides a synthetic strategy for the preparation of shape-controlling VO2(M/R) nanoparticles with high purity to satisfy different specific demands for corresponding applications in the field of thermochromic smart windows.
S A Corr, M Grossman, J D Furman, B C Melot, A K Cheetham, K R Heier, R Seshadri. Controlled reduction of vanadium oxide nanoscrolls: crystal structure, morphology, and electrical properties. Chemistry of Materials, 2008, 20(20): 6396–6404 https://doi.org/10.1021/cm801539f
2
Y Gao, S Wang, L Kang, Z Chen, J Du, X Liu, H Luo, M Kanehira. VO2–Sb:SnO2 composite thermochromic smart glass foil. Energy & Environmental Science, 2012, 5(8): 8234–8237 https://doi.org/10.1039/c2ee21119j
3
C Wu, X Zhang, J Dai, J Yang, Z Wu, S Wei, Y Xie. Direct hydrothermal synthesis of monoclinic VO2(M) single-domain nanorods on large scale displaying magnetocaloric effect. Journal of Materials Chemistry, 2011, 21(12): 4509–4517 https://doi.org/10.1039/c0jm03078c
4
A Paone, M Joly, R Sanjines, A Romanyuk, J L Scartezzini, A Schüler. Thermochromic films of VO2:W for smart solar energy applications. In: Proceedings of Optical Modeling and Measurements for Solar Energy Systems III. San Diego: International Society for Optics and Photonics, 2009, 7410: 74100F
5
M Li, S Magdassi, Y Gao, Y Long. Hydrothermal synthesis of VO2 polymorphs: advantages, challenges and prospects for the application of energy efficient smart windows. Small, 2017, 13(36): 1701147 https://doi.org/10.1002/smll.201701147
pmid: 28722273
6
Y Xu, W Huang, Q Shi, Y Zhang, J Wu, L Song. Porous nano-structured VO2 films with different surfactants: synthesis mechanisms, characterization, and applications. Journal of Materials Science Materials in Electronics, 2013, 24(10): 3823–3829 https://doi.org/10.1007/s10854-013-1324-x
7
M Taha, S Walia, T Ahmed, D Headland, W Withayachumnankul, S Sriram, M Bhaskaran. Insulator–metal transition in substrate-independent VO2 thin film for phase-change devices. Scientific Reports, 2017, 7(1): 17899 https://doi.org/10.1038/s41598-017-17937-3
8
Z Zhang, Y Gao, Z Chen, J Du, C Cao, L Kang, H Luo. Thermochromic VO2 thin films: solution-based processing, improved optical properties, and lowered phase transformation temperature. Langmuir, 2010, 26(13): 10738–10744 https://doi.org/10.1021/la100515k
pmid: 20329789
9
S Li, Y Li, M Jiang, S Ji, H Luo, Y Gao, P Jin. Preparation and characterization of self-supporting thermochromic films composed of VO2(M)@SiO2 nanofibers. ACS Applied Materials & Interfaces, 2013, 5(14): 6453–6457 https://doi.org/10.1021/am401839d
pmid: 23789577
10
F Wang, Y Liu, C Y Liu. Molten salt synthesis and localized surface plasmon resonance study of vanadium dioxide nanopowders. Journal of Solid State Chemistry, 2009, 182(12): 3249–3253 https://doi.org/10.1016/j.jssc.2009.09.014
11
C Zheng, X Zhang, J Zhang, K Liao. Preparation and characterization of VO2 nanopowders. Journal of Solid State Chemistry, 2001, 156(2): 274–280 https://doi.org/10.1006/jssc.2000.8952
12
C Wu, J Dai, X Zhang, J Yang, F Qi, C Gao, Y Xie. Direct confined-space combustion forming monoclinic vanadium dioxides. Angewandte Chemie International Edition, 2010, 49(1): 134–137 https://doi.org/10.1002/anie.200905227
pmid: 19943305
13
C Cao, Y Gao, H Luo. Pure single-crystal rutile vanadium dioxide powders: synthesis, mechanism and phase-transformation property. Journal of Physical Chemistry C, 2008, 112(48): 18810–18814 https://doi.org/10.1021/jp8073688
14
J H Son, J Wei, D Cobden, G Z Cao, Y N Xia. Hydrothermal synthesis of monoclinic VO2 micro-and nanocrystals in one step and their use in fabricating inverse opals. Chemistry of Materials, 2010, 22(10): 3043–3050 https://doi.org/10.1002/admi.201600164
15
L Whittaker, C Jaye, Z Fu, D A Fischer, S Banerjee. Depressed phase transition in solution-grown VO2 nanostructures. Journal of the American Chemical Society, 2009, 131(25): 8884–8894 https://doi.org/10.1021/ja902054w
pmid: 19505072
16
K F Zhang, X Liu, Z X Su, H L Li. VO2(R) nanobelts resulting from the irreversible transformation of VO2(B) nanobelts. Materials Letters, 2007, 61(13): 2644–2647 https://doi.org/10.1016/j.matlet.2006.10.039
J Li, C Liu, L Mao. The character of W-doped one-dimensional VO2(M). Journal of Solid State Chemistry, 2009, 182(10): 2835–2839 https://doi.org/10.1016/j.jssc.2009.07.031
19
Z Gui, R Fan, W Mo, X Chen, L Yang, S Zhang, Y Hu, Z Wang, W Fan. Precursor morphology controlled formation of rutile VO2 nanorods and their self-assembled structure. Chemistry of Materials, 2002, 14(12): 5053–5056 https://doi.org/10.1021/cm020178f
20
D Alie, L Gedvilas, Z Wang, R Tenent, C Engtrakul, Y Yan, S E Shaheen, A C Dillon, C Ban. Direct synthesis of thermochromic VO2 through hydrothermal reaction. Journal of Solid State Chemistry, 2014, 212: 237–241 https://doi.org/10.1016/j.jssc.2013.10.023
21
M Li, F Kong, Y Zhang, G Li. Hydrothermal synthesis of VO2(B) nanorings with inorganic V2O5 sol. Royal Society of Chemistry, 2011, 13(7): 2204–2207 https://doi.org/10.1039/c0ce00946f
22
Y Dong, S Li, K Zhao, C Han, W Chen, B Wang, L Wang, B Xu, Q Wei, L Zhang, X Xu, L Mai. Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes. Energy & Environmental Science, 2015, 8(4): 1267–1275 https://doi.org/10.1039/C5EE00036J
23
S Zhang, Y Li, C Wu, F Zheng, Y Xie. Novel flowerlike metastable vanadium dioxide (B) micronanostructures: facile synthesis and application in aqueous lithium ion batteries. Journal of Physical Chemistry C, 2009, 113(33): 15058–15067 https://doi.org/10.1021/jp903312h
24
N Wang, M Duchamp, C Xue, R E Dunin-Borkowski, G Liu, Y Long. Single-crystalline W-doped VO2 nanobeams with highly reversible electrical and plasmonic responses near room temperature. Advanced Materials Interfaces, 2016, 3(15): 1600164 https://doi.org/10.1002/admi.201600164
25
H Liu, Y Wang, K Wang, E Hosono, H Zhou. Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. Journal of Materials Chemistry, 2009, 19(18): 2835–2840 https://doi.org/10.1039/b821799h
26
L Dai, S Chen, J Liu, Y Gao, J Zhou, Z Chen, C Cao, H Luo, M Kanehira. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability. Physical Chemistry Chemical Physics, 2013, 15(28): 11723–11729 https://doi.org/10.1039/c3cp51359a
pmid: 23752949
27
J Zhou, Y Gao, X Liu, Z Chen, L Dai, C Cao, H Luo, M Kanahira, C Sun, L Yan. Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature. Physical Chemistry Chemical Physics, 2013, 15(20): 7505–7511 https://doi.org/10.1039/c3cp50638j
pmid: 23579557
28
R Chen, L Miao, C Liu, J Zhou, H Cheng, T Asaka, Y Iwamoto, S Tanemura. Shape-controlled synthesis and influence of W doping and oxygen nonstoichiometry on the phase transition of VO2. Scientific Reports, 2015, 5(1): 14087 https://doi.org/10.1038/srep14087
pmid: 26373612
29
R Chen, L Miao, H Cheng, E Nishibori, C Liu, T Asaka, Y Iwamoto, M Takata, S Tanemura. One-step hydrothermal synthesis of V1−xWxO2(M/R) nanorods with superior doping efficiency and thermochromic properties. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(7): 3726–3738 https://doi.org/10.1039/C4TA05559D
30
C Leroux, G Nihoul, G V Tendeloo. From VO2(B), to VO2(R): theoretical structures of VO2, polymorphs and in situ, electron microscopy. Physical Review B, 1998, 57(9): 5111–5121 https://doi.org/10.1103/PhysRevB.57.5111
31
C D Wagner, W M Riggs, L E Davis, J F Moulder, G E Muilenberg. Handbook of X-ray Photoelectron Spectroscopy. Minnesota: Perkin-Elmer Corporation Press, 1979, 38
32
E Z Kurmaev, V M Cherkashenko, Y M Yarmoshenko, S Bartkowski, A V Postnikov, M Neumann, L C Duda, J H Guo, J Nordgren, V A Perelyaev, W Reichelt. Electronic structure of studied by X-ray photoelectron and X-ray emission spectroscopies. Journal of Physics Condensed Matter, 1998, 10(18): 4081–4091 https://doi.org/10.1088/0953-8984/10/18/017
33
J Cui, D Da, W Jiang. Structure characterization of vanadium oxide thin films prepared by magnetron sputtering methods. Applied Surface Science, 1998, 133(3): 225–229 https://doi.org/10.1016/S0169-4332(98)00201-3
34
D Yin, N Xu, J Zhang, X Zheng. High quality vanadium dioxide films prepared by an inorganic sol-gel method. Materials Research Bulletin, 1996, 31(3): 335–340 https://doi.org/10.1016/0025-5408(95)00191-3
35
W Burkhardt, T Christmann, B K Meyer, W Niessner, D Schalch, A Scharmann. W- and F-doped VO2 films studied by photoelectron spectrometry. Thin Solid Films, 1999, 345(2): 229–235 https://doi.org/10.1016/S0040-6090(98)01406-0
F Li, X Wang, C Shao, R Tan, Y Liu. W doped vanadium oxide nanotubes: synthesis and characterization. Materials Letters, 2007, 61(6): 1328–1332 https://doi.org/10.1016/j.matlet.2006.07.065