Influence of precursor concentration on printable mesoscopic perovskite solar cells
Shuangquan JIANG, Yusong SHENG, Yue HU, Yaoguang RONG, Anyi MEI(), Hongwei HAN
Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Over the last decade, the power conversion efficiency of hybrid organic–inorganic perovskite solar cells (PSCs) has increased dramatically from 3.8% to 25.2%. This rapid progress has been possible due to the accurate control of the morphology and crystallinity of solution-processed perovskites, which are significantly affected by the concentration of the precursor used. This study explores the influence of precursor concentrations on the performance of printable hole-conductor-free mesoscopic PSCs via a simple one-step drop-coating method. The results reveal that lower concentrations lead to larger grains with inferior pore filling, while higher concentrations result in smaller grains with improved pore filling. Among concentrations ranging from 0.24–1.20 M, devices based on a moderate strength of 0.70 M were confirmed to exhibit the best efficiency at 16.32%.
M Saliba, T Matsui, K Domanski, J Y Seo, A Ummadisingu, S M Zakeeruddin, J P Correa-Baena, W R Tress, A Abate, A Hagfeldt, M Grätzel. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 2016, 354(6309): 206–209 https://doi.org/10.1126/science.aah5557
pmid: 27708053
2
S Liu, Y Guan, Y Sheng, Y Hu, Y Rong, A Mei, H Han. A review on additives for halide perovskite solar cells. Advanced Energy Materials, 2020, 10(13): 1902492 https://doi.org/10.1002/aenm.201902492
3
S D Stranks, G E Eperon, G Grancini, C Menelaou, M J P Alcocer, T Leijtens, L M Herz, A Petrozza, H J Snaith. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156): 341–344 https://doi.org/10.1126/science.1243982
pmid: 24136964
4
N J Jeon, J H Noh, W S Yang, Y C Kim, S Ryu, J Seo, S I Seok. Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015, 517(7535): 476–480 https://doi.org/10.1038/nature14133
pmid: 25561177
5
J Tong, Z Song, D H Kim, X Chen, C Chen, A F Palmstrom, P F Ndione, M O Reese, S P Dunfield, O G Reid, J Liu, F Zhang, S P Harvey, Z Li, S T Christensen, G Teeter, D Zhao, M M Al-Jassim, M F A M van Hest, M C Beard, S E Shaheen, J J Berry, Y Yan, K Zhu. Carrier lifetimes of >1 ms in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 2019, 364(6439): 475–479 https://doi.org/10.1126/science.aav7911
pmid: 31000592
6
H Min, M Kim, S U Lee, H Kim, G Kim, K Choi, J H Lee, S I Seok. Efficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodide. Science, 2019, 366(6466): 749–753 https://doi.org/10.1126/science.aay7044
pmid: 31699938
7
M Kim, G H Kim, T K Lee, I W Choi, H W Choi, Y Jo, Y J Yoon, J W Kim, J Lee, D Huh, H Lee, S K Kwak, J Y Kim, D S Kim. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 2019, 3(9): 2179–2192
8
R Lin, K Xiao, Z Qin, Q Han, C Zhang, M Wei, M I Saidaminov, Y Gao, J Xu, M Xiao, A Li, J Zhu, E H Sargent, H Tan. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nature Energy, 2019, 4(10): 864–873 https://doi.org/10.1038/s41560-019-0466-3
9
W Nie, H Tsai, R Asadpour, J C Blancon, A J Neukirch, G Gupta, J J Crochet, M Chhowalla, S Tretiak, M A Alam, H L Wang, A D Mohite. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015, 347(6221): 522–525 https://doi.org/10.1126/science.aaa0472
pmid: 25635093
10
X Gong, M Li, X B Shi, H Ma, Z K Wang, L S Liao. Controllable perovskite crystallization by water additive for high-performance solar cells. Advanced Functional Materials, 2015, 25(42): 6671–6678 https://doi.org/10.1002/adfm.201503559
11
D Bi, C Yi, J Luo, J D Décoppet, F Zhang, S M Zakeeruddin , X Li, A Hagfeldt, M Grätzel. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nature Energy, 2016, 1(10): 16142 https://doi.org/10.1038/nenergy.2016.142
12
Y Zhou, O S Game, S Pang, N P Padture. Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. Journal of Physical Chemistry Letters, 2015, 6(23): 4827–4839 https://doi.org/10.1021/acs.jpclett.5b01843
pmid: 26560696
13
D P McMeekin, Z Wang, W Rehman, F Pulvirenti, J B Patel, N K Noel, M B Johnston, S R Marder, L M Herz, H J Snaith. Crystallization kinetics and morphology control of Formamidinium-Cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution. Advanced Materials, 2017, 29(29): 1607039 https://doi.org/10.1002/adma.201607039
pmid: 28561912
14
P K Nayak, D T Moore, B Wenger, S Nayak, A A Haghighirad, A Fineberg, N K Noel, O G Reid, G Rumbles, P Kukura, K A Vincent, H J Snaith. Mechanism for rapid growth of organic-inorganic halide perovskite crystals. Nature Communications, 2016, 7(1): 13303 https://doi.org/10.1038/ncomms13303
pmid: 27830749
15
N K Noel, M Congiu, A J Ramadan, S Fearn, D P McMeekin, J B Patel, M B Johnston, B Wenger, H J Snaith. Unveiling the Influence of pH on the crystallization of hybrid perovskites, delivering low voltage loss photovoltaics. Joule, 2017, 1(2): 328–343 https://doi.org/10.1016/j.joule.2017.09.009
16
L Etgar, P Gao, Z Xue, Q Peng, A K Chandiran, B Liu, M K Nazeeruddin, M Grätzel. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. Journal of the American Chemical Society, 2012, 134(42): 17396–17399 https://doi.org/10.1021/ja307789s
pmid: 23043296
17
N J Jeon, J H Noh, Y C Kim, W S Yang, S Ryu, S I Seok. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nature Materials, 2014, 13(9): 897–903 https://doi.org/10.1038/nmat4014
pmid: 24997740
18
J Chen, Y Xiong, Y Rong, A Mei, Y Sheng, P Jiang, Y Hu, X Li, H Han. Solvent effect on the hole-conductor-free fully printable perovskite solar cells. Nano Energy, 2016, 27(Supplement C): 130–137 https://doi.org/10.1016/j.nanoen.2016.06.047
19
K Yan, M Long, T Zhang, Z Wei, H Chen, S Yang, J Xu. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. Journal of the American Chemical Society, 2015, 137(13): 4460–4468 https://doi.org/10.1021/jacs.5b00321
pmid: 25780941
20
J Burschka, N Pellet, S J Moon, R Humphry-Baker, P Gao, M K Nazeeruddin, M Grätzel. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316–319 https://doi.org/10.1038/nature12340
pmid: 23842493
21
D Bi, A M El-Zohry, A Hagfeldt, G Boschloo. Unraveling the effect of PbI2 concentration on charge recombination kinetics in perovskite solar cells. ACS Photonics, 2015, 2(5): 589–594 https://doi.org/10.1021/ph500255t
22
H Zhang, J Mao, H He, D Zhang, H L Zhu, F Xie, K S Wong, M Grätzel, W C H Choy. A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar-heterojunction solar cells. Advanced Energy Materials, 2015, 5(23): 1501354 https://doi.org/10.1002/aenm.201501354
23
S Wieghold, J P Correa-Baena, L Nienhaus, S Sun, K E Shulenberger, Z Liu, J S Tresback, S S Shin, M G Bawendi, T Buonassisi. Precursor concentration affects grain size, crystal orientation, and local performance in mixed-ion lead perovskite solar cells. ACS Applied Energy Materials, 2018, 1(12): 6801–6808 https://doi.org/10.1021/acsaem.8b00913
24
Z Ku, Y Rong, M Xu, T Liu, H Han. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Scientific Reports, 2013, 3(1): 3132 https://doi.org/10.1038/srep03132
pmid: 24185501
25
C Tian, A Mei, S Zhang, H Tian, S Liu, F Qin, Y Xiong, Y Rong, Y Hu, Y Zhou, S Xie, H Han. Oxygen management in carbon electrode for high-performance printable perovskite solar cells. Nano Energy, 2018, 53: 160–167 https://doi.org/10.1016/j.nanoen.2018.08.050
26
A Mei, X Li, L Liu, Z Ku, T Liu, Y Rong, M Xu, M Hu, J Chen, Y Yang, M Grätzel, H Han. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science, 2014, 345(6194): 295–298 https://doi.org/10.1126/science.1254763
pmid: 25035487
27
Y Rong, Y Hu, A Mei, H Tan, M I Saidaminov, S I Seok, M D McGehee, E H Sargent, H Han. Challenges for commercializing perovskite solar cells. Science, 2018, 361(6408): eaat8235 https://doi.org/10.1126/science.aat8235
pmid: 30237326
28
Y Ming, M Xu, S Liu, D Li, Q Wang, X Hou, Y Hu, Y Rong, H Han. Ethanol stabilized precursors for highly reproducible printable mesoscopic perovskite solar cells. Journal of Power Sources, 2019, 424: 261–267 https://doi.org/10.1016/j.jpowsour.2019.03.110
29
Y Rong, Y Hu, S Ravishankar, H Liu, X Hou, Y Sheng, A Mei, Q Wang, D Li, M Xu, J Bisquert, H Han. Tunable hysteresis effect for perovskite solar cells. Energy & Environmental Science, 2017, 10(11): 2383–2391 https://doi.org/10.1039/C7EE02048A
30
H J Snaith, A Abate, J M Ball, G E Eperon, T Leijtens, N K Noel, S D Stranks, J T Wang, K Wojciechowski, W Zhang. Anomalous hysteresis in perovskite solar cells. Journal of Physical Chemistry Letters, 2014, 5(9): 1511–1515 https://doi.org/10.1021/jz500113x
pmid: 26270088