Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
In this paper, we presented single mode terahertz quantum cascade lasers (THz QCLs) with sampled lateral grating emitting approximately 3.4 THz. Due to strong mode selection, the implementation of sampled lateral grating on THz QCL ridges can result in stable single longitudinal mode emission with a side-mode suppression ratio larger than 20 dB. The measured peak power of the grating laser is improved by about 11.8% compared to the power of devices with uniform distributed feedback gratings. Furthermore, the far-field pattern of the presented device is uninfluenced by grating structures.
S Kumar. Recent progress in terahertz quantum cascade lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 38–47 https://doi.org/10.1109/JSTQE.2010.2049735
2
T T Lin, K Wang, L Wang, H Hirayama. High output power THz quantum cascade lasers and their temperature dependent performance. Journal of Infrared and Millimeter Waves, 2018, 37(5): 513–518
3
B S Williams, S Kumar, Q Hu, J L Reno. Distributed-feedback terahertz quantum-cascade lasers with laterally corrugated metal waveguides. Optics Letters, 2005, 30(21): 2909–2911 https://doi.org/10.1364/OL.30.002909
pmid: 16279466
4
L Mahler, A Tredicucci, R Köhler, F Beltram, H E Beere, E H Linfield, D A Ritchie. High performance operation of single-mode terahertz quantum cascade lasers with metallic gratings. Applied Physics Letters, 2005, 87(18): 181101 https://doi.org/10.1063/1.2120901
5
M Wienold, A Tahraoui, L Schrottke, R Sharma, X Lü, K Biermann, R Hey, H T Grahn. Lateral distributed-feedback gratings for single-mode, high-power terahertz quantum-cascade lasers. Optics Express, 2012, 20(10): 11207–11217 https://doi.org/10.1364/OE.20.011207
pmid: 22565743
6
M I Amanti, M Fischer, G Scalari, M Beck, J Faist. Low-divergence single-mode terahertz quantum cascade laser. Nature Photonics, 2009, 3(10): 586–590 https://doi.org/10.1038/nphoton.2009.168
7
C Yao, T H Xu, W J Wan, H Li, J C Cao. Single-mode tapered terahertz quantum cascade lasers with lateral gratings. Solid-State Electronics, 2016, 122: 52–55 https://doi.org/10.1016/j.sse.2016.04.008
8
H Li, J M Manceau, A Andronico, V Jagtap, C Sirtori, L H Li, E H Linfield, A G Davies, S Barbieri. Coupled-cavity terahertz quantum cascade lasers for single mode operation. Applied Physics Letters, 2014, 104(24): 241102 https://doi.org/10.1063/1.4884056
9
B G Lee, M A Belkin, C Pflugl, L Diehl, H A Zhang, R M Audet, J MacArthur, D P Bour, S W Corzine, G E Hofler, F Capasso. DFB quantum cascade laser arrays. IEEE Journal of Quantum Electronics, 2009, 45(5): 554–565 https://doi.org/10.1109/JQE.2009.2013175
10
T S Mansuripur, S Menzel, R Blanchard, L Diehl, C Pflügl, Y Huang, J H Ryou, R D Dupuis, M Loncar, F Capasso. Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors. Optics Express, 2012, 20(21): 23339–23348 https://doi.org/10.1364/OE.20.023339
pmid: 23188297
11
S Slivken, S Sengupta, M Razeghi. High power continuous operation of a widely tunable quantum cascade laser with an integrated amplifier. Applied Physics Letters, 2015, 107(25): 251101 https://doi.org/10.1063/1.4938005
12
V Jayaraman, Z M Chuang, L A Coldren. Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings. IEEE Journal of Quantum Electronics, 1993, 29(6): 1824–1834 https://doi.org/10.1109/3.234440
13
L Li, L Chen, J Zhu, J Freeman, P Dean, A Valavanis, A G Davies, E H Linfield. Terahertz quantum cascade lasers with>1 W output powers. Electronics Letters, 2014, 50(4): 309–311 https://doi.org/10.1049/el.2013.4035
14
V Jayaraman, Z M Chuang, L A Coldren. Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings. IEEE Journal of Quantum Electronics, 1993, 29(6): 1824–1834 https://doi.org/10.1109/3.234440