Nanoimprint lithography for high-throughput fabrication of metasurfaces
Dong Kyo OH1, Taejun LEE1, Byoungsu KO1, Trevon BADLOE1, Jong G. OK2(), Junsuk RHO1,3()
1. Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea 2. Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology (SEOULTECH), Seoul 01811, Republic of Korea 3. Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
Metasurfaces are composed of periodic subwavelength nanostructures and exhibit optical properties that are not found in nature. They have been widely investigated for optical applications such as holograms, wavefront shaping, and structural color printing, however, electron-beam lithography is not suitable to produce large-area metasurfaces because of the high fabrication cost and low productivity. Although alternative optical technologies, such as holographic lithography and plasmonic lithography, can overcome these drawbacks, such methods are still constrained by the optical diffraction limit. To break through this fundamental problem, mechanical nanopatterning processes have been actively studied in many fields, with nanoimprint lithography (NIL) coming to the forefront. Since NIL replicates the nanopattern of the mold regardless of the diffraction limit, NIL can achieve sufficiently high productivity and patterning resolution, giving rise to an explosive development in the fabrication of metasurfaces. In this review, we focus on various NIL technologies for the manufacturing of metasurfaces. First, we briefly describe conventional NIL and then present various NIL methods for the scalable fabrication of metasurfaces. We also discuss recent applications of NIL in the realization of metasurfaces. Finally, we conclude with an outlook on each method and suggest perspectives for future research on the high-throughput fabrication of active metasurfaces.
F Lemoult, N Kaina, M Fink, G Lerosey. Wave propagation control at the deep subwavelength scale in metamaterials. Nature Physics, 2013, 9(11): 55–60 https://doi.org/10.1038/nphys2480
M Lawrence, D R Barton 3rd, J Dixon, J H Song, J van de Groep, M L Brongersma, J A Dionne. High quality factor phase gradient metasurfaces. Nature Nanotechnology, 2020, 15(11): 956–961 https://doi.org/10.1038/s41565-020-0754-x
pmid: 32807879
P C Wu, R A Pala, G Kafaie Shirmanesh, W H Cheng, R Sokhoyan, M Grajower, M Z Alam, D Lee, H A Atwater. Dynamic beam steering with all-dielectric electro-optic III-V multiple-quantum-well metasurfaces. Nature Communications, 2019, 10(1): 3654 https://doi.org/10.1038/s41467-019-11598-8
pmid: 31409790
7
Z J Wong, Y Wang, K O’Brien, J Rho, X B Yin, S Zhang, N Fang, T J Yen, X Zhang. Optical and acoustic metamaterials: Superlens, negative refractive index and invisibility cloak. Journal of Optics, 2017, 19(8): 084007 https://doi.org/10.1088/2040-8986/aa7a1f
8
S Bang, S So, J Rho. Realization of broadband negative refraction in visible range using vertically stacked hyperbolic metamaterials. Scientific Reports, 2019, 9(1): 14093 https://doi.org/10.1038/s41598-019-50434-3
pmid: 31575903
D Lee, Y Yang, G Yoon, M Kim, J Rho. Resolution enhancement of fluorescence microscopy using encoded patterns from all-dielectric metasurfaces. Applied Physics Letters, 2019, 115(10): 101102 https://doi.org/10.1063/1.5119006
11
D Lee, M Kim, J Kim, H Hong, T Badloe, D S Kim, J Rho. All-dielectric metasurface imaging platform applicable to laser scanning microscopy with enhanced axial resolution and wavelength selection. Optical Materials Express, 2019, 9(8): 3248–3259 https://doi.org/10.1364/OME.9.003248
M Byun, D Lee, M Kim, Y Kim, K Kim, J G Ok, J Rho, H Lee. Demonstration of nanoimprinted hyperlens array for high-throughput sub-diffraction imaging. Scientific Reports, 2017, 7(1): 46314 https://doi.org/10.1038/srep46314
pmid: 28393906
14
D Lee, Y D Kim, M Kim, S So, H J Choi, J Mun, D M Nguyen, T Badloe, J G Ok, K Kim, H Lee, J Rho. Realization of wafer-scale hyperlens device for sub-diffractional biomolecular imaging. ACS Photonics, 2018, 5(7): 2549–2554 https://doi.org/10.1021/acsphotonics.7b01182
15
J Jang, T Badloe, Y Yang, T Lee, J Mun, J Rho. Spectral modulation through the hybridization of Mie-scatterers and quasi-guided mode resonances: realizing full and gradients of structural color. ACS Nano, 2020, 14(11): 15317–15326 https://doi.org/10.1021/acsnano.0c05656
pmid: 33090760
16
R Mudachathi, T Tanaka. Up scalable full colour plasmonic pixels with controllable hue, brightness and saturation. Scientific Reports, 2017, 7(1): 1199 https://doi.org/10.1038/s41598-017-01266-6
pmid: 28446794
17
Y Lee, M K Park, S Kim, J H Shin, C Moon, J Y Hwang, J C Choi, H Park, H R Kim, J E Jang. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator. ACS Photonics, 2017, 4(8): 1954–1966 https://doi.org/10.1021/acsphotonics.7b00249
18
D Lee, J Gwak, T Badloe, S Palomba, J Rho. Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms. Nanoscale Advances, 2020, 2(2): 605–625 https://doi.org/10.1039/C9NA00751B
19
T Lee, J Jang, H Jeong, J Rho. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Convergence, 2018, 5(1): 1 https://doi.org/10.1186/s40580-017-0133-y
pmid: 29375956
20
M Kim, I Kim, J Jang, D Lee, K T Nam, J Rho. Active color control in a metasurface by polarization rotation. Applied Sciences (Basel, Switzerland), 2018, 8(6): 982 https://doi.org/10.3390/app8060982
21
G Yoon, D Lee, K T Nam, J Rho. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano, 2018, 12(7): 6421–6428 https://doi.org/10.1021/acsnano.8b01344
pmid: 29924588
22
J Jang, K Kang, N Raeis-Hosseini, A Ismukhanova, H Jeong, C Jung, B Kim, J Y Lee, I Park, J Rho. Self-powered humidity sensor using chitosan-based plasmonic metal-hydrogel-metal filters. Advanced Optical Materials, 2020, 8(9): 1901932 https://doi.org/10.1002/adom.201901932
23
R A Aoni, M Rahmani, L Xu, K Zangeneh Kamali, A Komar, J Yan, D Neshev, A E Miroshnichenko. High-efficiency visible light manipulation using dielectric metasurfaces. Scientific Reports, 2019, 9(1): 6510 https://doi.org/10.1038/s41598-019-42444-y
pmid: 31019220
24
J Jang, T Badloe, Y C Sim, Y Yang, J Mun, T Lee, Y H Cho, J Rho. Full and gradient structural colouration by lattice amplified gallium nitride Mie-resonators. Nanoscale, 2020, 12(41): 21392–21400 https://doi.org/10.1039/D0NR05624C
pmid: 33078822
25
I Kim, M A Ansari, M Q Mehmood, W S Kim, J Jang, M Zubair, Y K Kim, J Rho. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Advanced Materials, 2020, 32(50): e2004664 https://doi.org/10.1002/adma.202004664
pmid: 33169455
26
I Kim, G Yoon, J Jang, P Genevet, K T Nam, J Rho. Outfitting next generation displays with optical metasurfaces. ACS Photonics, 2018, 5(10): 3876–3895 https://doi.org/10.1021/acsphotonics.8b00809
27
Z Li, I Kim, L Zhang, M Q Mehmood, M S Anwar, M Saleem, D Lee, K T Nam, S Zhang, B Luk’yanchuk, Y Wang, G Zheng, J Rho, C W Qiu. Dielectric meta-holograms enabled with dual magnetic resonances in visible light. ACS Nano, 2017, 11(9): 9382–9389 https://doi.org/10.1021/acsnano.7b04868
pmid: 28898048
28
G Y Lee, G Yoon, S Y Lee, H Yun, J Cho, K Lee, H Kim, J Rho, B Lee. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale, 2018, 10(9): 4237–4245 https://doi.org/10.1039/C7NR07154J
pmid: 29350732
29
M A Ansari, I Kim, D Lee, M H Waseem, M Zubair, N Mahmood, T Badloe, S Yerci, T Tauqeer, M Q Mehmood, J Rho. A spin-encoded all-dielectric metahologram for visible light. Laser & Photonics Reviews, 2019, 13(5): 1900065 https://doi.org/10.1002/lpor.201900065
30
G Yoon, J Kim, J Mun, D Lee, K T Nam, J Rho. Wavelength-decoupled geometric metasurfaces by arbitrary dispersion control. Communications on Physics, 2019, 2(1): 129 https://doi.org/10.1038/s42005-019-0232-7
31
M A Ansari, I Kim, I D Rukhlenko, M Zubair, S Yerci, T Tauqeer, M Q Mehmood, J Rho. Engineering spin and antiferromagnetic resonances to realize an efficient direction-multiplexed visible meta-hologram. Nanoscale Horizons, 2020, 5(1): 57–64 https://doi.org/10.1039/C9NH00460B
32
G Yoon, D Lee, K T Nam, J Rho. Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility. ACS Photonics, 2018, 5(5): 1643–1647 https://doi.org/10.1021/acsphotonics.7b01044
33
H Ren, X Fang, J Jang, J Bürger, J Rho, S A Maier. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nature Nanotechnology, 2020, 15(11): 948–955 https://doi.org/10.1038/s41565-020-0768-4
pmid: 32958936
F B Barho, F Gonzalez-Posada, L Cerutti, T Taliercio. Heavily doped semiconductor metamaterials for mid-infrared multispectral perfect absorption and thermal emission. Advanced Optical Materials, 2020, 8(6): 1901502 https://doi.org/10.1002/adom.201901502
36
G Yoon, S So, M Kim, J Mun, R Ma, J Rho. Electrically tunable metasurface perfect absorber for infrared frequencies. Nano Convergence, 2017, 4(1): 36 https://doi.org/10.1186/s40580-017-0131-0
pmid: 29291156
37
D M Nguyen, D Lee, J Rho. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths. Scientific Reports, 2017, 7(1): 2611 https://doi.org/10.1038/s41598-017-02847-1
pmid: 28572672
38
T Badloe, J Mun, J Rho. Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors. Journal of Nanomaterials, 2017, 2017(1): 2361042 https://doi.org/10.1155/2017/2361042
39
T Badloe, I Kim, J Rho. Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide. Scientific Reports, 2020, 10(1): 4522 https://doi.org/10.1038/s41598-020-59729-2
pmid: 32161273
40
T Badloe, I Kim, J Rho. Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning. Physical Chemistry Chemical Physics, 2020, 22(4): 2337–2342 https://doi.org/10.1039/C9CP05621A
pmid: 31932814
41
I Kim, S So, A S Rana, M Q Mehmood, J Rho. Thermally robust ring-shaped chromium perfect absorber of visible light. Nanophotonics, 2018, 7(11): 1827–1833 https://doi.org/10.1515/nanoph-2018-0095
42
I Sajedian, T Badloe, H Lee, J Rho. Deep Q-network to produce polarization-independent perfect solar absorbers: a statistical report. Nano Convergence, 2020, 7(1): 26 https://doi.org/10.1186/s40580-020-00233-8
pmid: 32748091
43
G Yoon, J Jang, J Mun, K T Nam, J Rho. Metasurface zone plate for light manipulation in vectorial regime. Communications on Physics, 2019, 2(1): 156 https://doi.org/10.1038/s42005-019-0258-x
Y H Wang, R C Jin, J Q Li, F Zhong, H Liu, I Kim, Y Jo, J Rho, Z G Dong. Photonic spin hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures. Applied Physics Letters, 2017, 110(10): 101908 https://doi.org/10.1063/1.4978520
46
Y H Wang, I Kim, R C Jin, H Jeong, J Q Li, Z G Dong, J Rho. Experimental verification of asymmetric transmission in continuous omega-shaped metamaterials. RSC Advances, 2018, 8(67): 38556–38561 https://doi.org/10.1039/C8RA08073A
47
J Hong, S J Kim, I Kim, H Yun, S E Mun, J Rho, B Lee. Plasmonic metasurface cavity for simultaneous enhancement of optical electric and magnetic fields in deep subwavelength volume. Optics Express, 2018, 26(10): 13340–13348 https://doi.org/10.1364/OE.26.013340
pmid: 29801359
48
I Kim, S So, J Mun, K H Lee, J H Lee, T Lee, J Rho. Optical characterizations and thermal analyses of HfO2/SiO2 multilayered diffraction gratings for high-power continuous wave laser. Journal of Physics: Photonics, 2020, 2(2): 025004 https://doi.org/10.1088/2515-7647/ab7b0f
49
N Mahmood, I Kim, M Q Mehmood, H Jeong, A Akbar, D Lee, M Saleem, M Zubair, M S Anwar, F A Tahir, J Rho. Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides. Nanoscale, 2018, 10(38): 18323–18330 https://doi.org/10.1039/C8NR05633A
pmid: 30255919
50
N Mahmood, H Jeong, I Kim, M Q Mehmood, M Zubair, A Akbar, M Saleem, M S Anwar, F A Tahir, J Rho. Twisted non-diffracting beams through all dielectric meta-axicons. Nanoscale, 2019, 11(43): 20571–20578 https://doi.org/10.1039/C9NR04888J
pmid: 31637386
51
Z Li, Q Dai, M Q Mehmood, G Hu, B L Yanchuk, J Tao, C Hao, I Kim, H Jeong, G Zheng, S Yu, A Alù, J Rho, C W Qiu. Full-space cloud of random points with a scrambling metasurface. Light, Science & Applications, 2018, 7(1): 63 https://doi.org/10.1038/s41377-018-0064-3
pmid: 30245810
52
G Yoon, D Lee, J Rho. Demonstration of equal-intensity beam generation by dielectric metasurfaces. Journal of Visualized Experiments, 2019, 148(148): e59066 https://doi.org/10.3791/59066
pmid: 31233027
53
H E Lee, H Y Ahn, J Mun, Y Y Lee, M Kim, N H Cho, K Chang, W S Kim, J Rho, K T Nam. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature, 2018, 556(7701): 360–365 https://doi.org/10.1038/s41586-018-0034-1
pmid: 29670265
54
N Raeis-Hosseini, J Rho. Dual-functional nanoscale devices using phase-change materials: a reconfigurable perfect absorber with nonvolatile resistance-change memory characteristics. Applied Sciences (Basel, Switzerland), 2019, 9(3): 564 https://doi.org/10.3390/app9030564
55
N Raeis-Hosseini, J Rho. Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices. Materials (Basel), 2017, 10(9): 1046 https://doi.org/10.3390/ma10091046
pmid: 28878196
56
G Yoon, I Kim, S So, J Mun, M Kim, J Rho. Fabrication of three-dimensional suspended, interlayered and hierarchical nanostructures by accuracy-improved electron beam lithography overlay. Scientific Reports, 2017, 7(1): 6668 https://doi.org/10.1038/s41598-017-06833-5
pmid: 28751643
57
I C Seo, B H Woo, S C An, E Lee, H Y Jeong, Y Lim, Y C Jun. Electron-beam-induced nanopatterning of J-aggregate thin films for excitonic and photonic response control. Advanced Optical Materials, 2018, 6(20): 1800583 https://doi.org/10.1002/adom.201800583
58
C Jung, Y Yang, J Jang, T Badloe, T Lee, J Mun, S W Moon, J Rho. Near-zero reflection of all-dielectric structural coloration enabling polarization-sensitive optical encryption with enhanced switchability. Nanophotonics, 2020, 10(2): 919–926 https://doi.org/10.1515/nanoph-2020-0440
59
J Zhou, H Qian, C F Chen, J Zhao, G Li, Q Wu, H Luo, S Wen, Z Liu. Optical edge detection based on high-efficiency dielectric metasurface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(23): 11137–11140 https://doi.org/10.1073/pnas.1820636116
pmid: 31101711
60
T Jeon, D H Kim, S G Park. Holographic fabrication of 3D nanostructures. Advanced Materials Interfaces, 2018, 5(18): 1800330 https://doi.org/10.1002/admi.201800330
61
Y Oh, J W Lim, J G Kim, H Wang, B H Kang, Y W Park, H Kim, Y J Jang, J Kim, D H Kim, B K Ju. Plasmonic periodic nanodot arrays via laser interference lithography for organic photovoltaic cells with >10% efficiency. ACS Nano, 2016, 10(11): 10143–10151 https://doi.org/10.1021/acsnano.6b05313
pmid: 27809471
62
S Bagheri, N Strohfeldt, F Sterl, A Berrier, A Tittl, H Giessen. Large-area low-cost plasmonic perfect absorber chemical sensor fabricated by laser interference lithography. ACS Sensors, 2016, 1(9): 1148–1154 https://doi.org/10.1021/acssensors.6b00444
63
Y S Do. A highly reproducible fabrication process for large-area plasmonic filters for optical applications. IEEE Access: Practical Innovations, Open Solutions, 2018, 6(1): 68961–68967 https://doi.org/10.1109/ACCESS.2018.2880456
64
M Song, X Li, M Pu, Y Guo, K Liu, H Yu, X Ma, X Luo. Color display and encryption with a plasmonic polarizing metamirror. Nanophotonics, 2018, 7(1): 323–331 https://doi.org/10.1515/nanoph-2017-0062
65
Z Gan, J Cai, C Liang, L Chen, S Min, X Cheng, D Cui, W D Li. Patterning of high-aspect-ratio nanogratings using phase-locked two-beam fiber-optic interference lithography. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures, 2019, 37(6): 060601
66
G Liang, C Wang, Z Zhao, Y Wang, N Yao, P Gao, Y Luo, G Gao, Q Zhao, X Luo. Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography. Advanced Optical Materials, 2015, 3(9): 1248–1256 https://doi.org/10.1002/adom.201400596
67
H C Liu, W J Kong, Q G Zhu, Y Zheng, K S Shen, J Zhang, H Lu. Plasmonic interference lithography by coupling the bulk plasmon polariton mode and the waveguide mode. Journal of Physics D, Applied Physics, 2020, 53(13): 135103 https://doi.org/10.1088/1361-6463/ab6430
68
P Gao, M Pu, X Ma, X Li, Y Guo, C Wang, Z Zhao, X Luo. Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm. Nanoscale, 2020, 12(4): 2415–2421 https://doi.org/10.1039/C9NR08153D
pmid: 31750491
69
J Luo, B Zeng, C Wang, P Gao, K Liu, M Pu, J Jin, Z Zhao, X Li, H Yu, X Luo. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. Nanoscale, 2015, 7(44): 18805–18812 https://doi.org/10.1039/C5NR05153C
pmid: 26507847
70
C Wang, W Zhang, Z Zhao, Y Wang, P Gao, Y Luo, X Luo. Plasmonic structures, materials and lenses for optical lithography beyond the diffraction limit: A review. Micromachines, 2016, 7(7): 118 https://doi.org/10.3390/mi7070118
pmid: 30404291
71
S K Kim. Impact of plasmonic parameters on 7-nm patterning in plasmonic computational lithography. Journal of Nanoscience and Nanotechnology, 2018, 18(10): 7124–7127 https://doi.org/10.1166/jnn.2018.15483
pmid: 29954545
I Kim, J Mun, K M Baek, M Kim, C Hao, C W Qiu, Y S Jung, J Rho. Cascade domino lithography for extreme photon squeezing. Materials Today, 2020, 39(1): 89–97 https://doi.org/10.1016/j.mattod.2020.06.002
74
I Kim, J Mun, W Hwang, Y Yang, J Rho. Capillary-force-induced collapse lithography for controlled plasmonic nanogap structures. Microsystems & Nanoengineering, 2020, 6(1): 65 https://doi.org/10.1038/s41378-020-0177-8
75
V B Nam, T T Giang, S Koo, J Rho, D Lee. Laser digital patterning of conductive electrodes using metal oxide nanomaterials. Nano Convergence, 2020, 7(1): 23 https://doi.org/10.1186/s40580-020-00232-9
pmid: 32632474
76
S Y Chou, P R Krauss, P J Renstrom. Nanoimprint lithography. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1996, 14(6): 4129–4133 https://doi.org/10.1116/1.588605
S Y Chou. Sub-10 nm imprint lithography and applications. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1997, 15(6): 2897–2904 https://doi.org/10.1116/1.589752
79
J Haisma, M Verheijen, K van den Heuvel, J van den Berg. Mold-assisted nanolithography: a process for reliable pattern replication. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1996, 14(6): 4124–4128 https://doi.org/10.1116/1.588604
80
M D Austin, H Ge, W Wu, M Li, Z Yu, D Wasserman, S A Lyon, S Y Chou. Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Applied Physics Letters, 2004, 84(26): 5299–5301 https://doi.org/10.1063/1.1766071
81
U Plachetka, M Bender, A Fuchs, B Vratzov, T Glinsner, F Lindner, H Kurz. Wafer scale patterning by soft UV-nanoimprint lithography. Microelectronic Engineering, 2004, 73–74(1): 167–171 https://doi.org/10.1016/S0167-9317(04)00093-0
82
S V Sreenivasan. Nanoimprint lithography steppers for volume fabrication of leading-edge semiconductor integrated circuits. Microsystems & Nanoengineering, 2017, 3(1): 17075 https://doi.org/10.1038/micronano.2017.75
pmid: 31057889
83
W Qiao, W Huang, Y Liu, X Li, L S Chen, J X Tang. Toward scalable flexible nanomanufacturing for photonic structures and devices. Advanced Materials, 2016, 28(47): 10353–10380 https://doi.org/10.1002/adma.201601801
pmid: 27976840
M Kim, D Lee, T H Kim, Y Yang, H J Park, J Rho. Observation of enhanced optical spin hall effect in a vertical hyperbolic metamaterial. ACS Photonics, 2019, 6(10): 2530–2536 https://doi.org/10.1021/acsphotonics.9b00904
86
M Atighilorestani, H Jiang, B Kaminska. Electrochromic-polymer-based switchable plasmonic color devices using surface-relief nanostructure pixels. Advanced Optical Materials, 2018, 6(23): 1801179 https://doi.org/10.1002/adom.201801179
87
D Lee, S Y Han, Y Jeong, D M Nguyen, G Yoon, J Mun, J Chae, J H Lee, J G Ok, G Y Jung, H J Park, K Kim, J Rho. Polarization-sensitive tunable absorber in visible and near-infrared regimes. Scientific Reports, 2018, 8(1): 12393 https://doi.org/10.1038/s41598-018-30835-6
pmid: 30120371
G Yoon, I Kim, J Rho. Challenges in fabrication towards realization of practical metamaterials. Microelectronic Engineering, 2016, 163(1): 7–20 https://doi.org/10.1016/j.mee.2016.05.005
90
Y Yao, H Liu, Y Wang, Y Li, B Song, R P Wang, M L Povinelli, W Wu. Nanoimprint-defined, large-area meta-surfaces for unidirectional optical transmission with superior extinction in the visible-to-infrared range. Optics Express, 2016, 24(14): 15362–15372 https://doi.org/10.1364/OE.24.015362
pmid: 27410812
91
G Y Lee, J Y Hong, S Hwang, S Moon, H Kang, S Jeon, H Kim, J H Jeong, B Lee. Metasurface eyepiece for augmented reality. Nature Communications, 2018, 9(1): 4562 https://doi.org/10.1038/s41467-018-07011-5
pmid: 30385830
92
Y H Wan, N A Krueger, C R Ocier, P Su, P V Braun, B T Cunningham. Resonant mode engineering of photonic crystal sensors clad with ultralow refractive index porous silicon dioxide. Advanced Optical Materials, 2017, 5(21): 1700605 https://doi.org/10.1002/adom.201700605
D H Chun, Y J Choi, Y In, J K Nam, Y J Choi, S Yun, W Kim, D Choi, D Kim, H Shin, J H Cho, J H Park. Halide perovskite nanopillar photodetector. ACS Nano, 2018, 12(8): 8564–8571 https://doi.org/10.1021/acsnano.8b04170
pmid: 30001099
95
N Pourdavoud, S Wang, A Mayer, T Hu, Y Chen, A Marianovich, W Kowalsky, R Heiderhoff, H C Scheer, T Riedl. Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites. Advanced Materials, 2017, 29(12): 1605003 https://doi.org/10.1002/adma.201605003
pmid: 28102599
96
J Mao, W E I Sha, H Zhang, X G Ren, J Q Zhuang, V A L Roy, K S Wong, W C H Choy. Novel direct nanopatterning approach to fabricate periodically nanostructured perovskite for optoelectronic applications. Advanced Functional Materials, 2017, 27(10): 1606525 https://doi.org/10.1002/adfm.201606525
97
S V Makarov, V Milichko, E V Ushakova, M Omelyanovich, A C Pasaran, R Haroldson, B Balachandran, H L Wang, W Hu, Y S Kivshar, A A Zakhidov. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics, 2017, 4(4): 728–735 https://doi.org/10.1021/acsphotonics.6b00940
98
H Wang, S C Liu, B Balachandran, J Moon, R Haroldson, Z Li, A Ishteev, Q Gu, W Zhou, A Zakhidov, W Hu. Nanoimprinted perovskite metasurface for enhanced photoluminescence. Optics Express, 2017, 25(24): A1162–A1171 https://doi.org/10.1364/OE.25.0A1162
pmid: 29221064
99
S W Baek, P Molet, M J Choi, M Biondi, O Ouellette, J Fan, S Hoogland, F P García de Arquer, A Mihi, E H Sargent. Nanostructured back reflectors for efficient colloidal quantum-dot infrared optoelectronics. Advanced Materials, 2019, 31(33): e1901745 https://doi.org/10.1002/adma.201901745
pmid: 31222877
100
Y Kim, K Bicanic, H Tan, O Ouellette, B R Sutherland, F P García de Arquer, J W Jo, M Liu, B Sun, M Liu, S Hoogland, E H Sargent. Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells. Nano Letters, 2017, 17(4): 2349–2353 https://doi.org/10.1021/acs.nanolett.6b05241
pmid: 28287738
101
C Pina-Hernandez, A Koshelev, S Dhuey, S Sassolini, M Sainato, S Cabrini, K Munechika. Nanoimprinted high-refractive index active photonic nanostructures based on quantum dots for visible light. Scientific Reports, 2017, 7(1): 17645 https://doi.org/10.1038/s41598-017-17732-0
pmid: 29247228
C Wang, J Shao, H Tian, X Li, Y Ding, B Q Li. Step-controllable electric-field-assisted nanoimprint lithography for uneven large-area substrates. ACS Nano, 2016, 10(4): 4354–4363 https://doi.org/10.1021/acsnano.5b08032
pmid: 27015525
104
S H Ahn, L J Guo. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Advanced Materials, 2008, 20(11): 2044–2049 https://doi.org/10.1002/adma.200702650
105
S H Lee, S W Kim, B S Kang, P S Chang, M K Kwak. Scalable and continuous fabrication of bio-inspired dry adhesives with a thermosetting polymer. Soft Matter, 2018, 14(14): 2586–2593 https://doi.org/10.1039/C7SM02354E
pmid: 29442124
106
H C Wong, G Grenci, J Wu, V Viasnoff, H Y Low. Roll-to-roll fabrication of residual-layer-free micro/nanoscale membranes with precise pore architectures and tunable surface textures. Industrial & Engineering Chemistry Research, 2018, 57(41): 13759–13768 https://doi.org/10.1021/acs.iecr.8b03867
107
Z Z Wang, P Y Yi, L F Peng, X M Lai, J Ni. Continuous fabrication of highly conductive and transparent Ag mesh electrodes for flexible electronics. IEEE Transactions on Nanotechnology, 2017, 16(4): 687–694 https://doi.org/10.1109/TNANO.2017.2705173
108
P Y Yi, C P Zhang, L F Peng, X M Lai. Flexible silver-mesh electrodes with moth-eye nanostructures for transmittance enhancement by double-sided roll-to-roll nanoimprint lithography. RSC Advances, 2017, 7(77): 48835–48840 https://doi.org/10.1039/C7RA09149D
109
N Lee, S Yoo, C H Kim, J Lim. Development of continuous metal patterns using two-dimensional atmospheric-pressure plasma-jet: On application to fabricate electrode on a flexible surface for film touch sensor. Journal of Micromechanics and Microengineering, 2019, 29(4): 045013 https://doi.org/10.1088/1361-6439/ab0705
110
L J Wang, Y S Zheng, C Wu, S L Jia. Experimental investigation of photoresist etching by kHz AC atmospheric pressure plasma jet. Applied Surface Science, 2016, 385(1): 191–198 https://doi.org/10.1016/j.apsusc.2016.05.126
111
Y Q Zhou, M J Li, L G Shen, H C Ye, J P Wang, S Z Huang. Effect of resin accumulation on filling process in roll-to-roll UV imprint lithography. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures, 2017, 35(3): 031602
112
U Tahir, M A Kamran, M Y Jeong. Numerical study on the optimization of roll-to-roll ultraviolet imprint lithography. Coatings, 2019, 9(9): 573 https://doi.org/10.3390/coatings9090573
113
F Kotz, N Schneider, A Striegel, A Wolfschläger, N Keller, M Worgull, W Bauer, D Schild, M Milich, C Greiner, D Helmer, B E Rapp. Glassomer-processing fused silica glass like a polymer. Advanced Materials, 2018, 30(22): e1707100 https://doi.org/10.1002/adma.201707100
pmid: 29611238
114
M Leitgeb, D Nees, S Ruttloff, U Palfinger, J Götz, R Liska, M R Belegratis, B Stadlober. Multilength scale patterning of functional layers by roll-to-roll ultraviolet-light-assisted nanoimprint lithography. ACS Nano, 2016, 10(5): 4926–4941 https://doi.org/10.1021/acsnano.5b07411
pmid: 27023664
115
S Koo, S H Lee, J D Kim, J G Hong, H W Baac, M K Kwak, J G Ok. Controlled airbrush coating of polymer resists in roll-to-roll nanoimprinting with regimented residual layer thickness. International Journal of Precision Engineering and Manufacturing, 2016, 17(7): 943–947 https://doi.org/10.1007/s12541-016-0115-8
116
J H Lee, M Na, J Kim, K Yoo, J Park, J D Kim, D K Oh, S Lee, H Youn, M K Kwak, J G Ok. Rapid and conformal coating of polymer resins by airbrushing for continuous and high-speed roll-to-roll nanopatterning: parametric quality controls and extended applications. Nano Convergence, 2017, 4(1): 11 https://doi.org/10.1186/s40580-017-0105-2
pmid: 28529841
117
N Kodihalli Shivaprakash, T Ferraguto, A Panwar, S S Banerjee, C F Barry, J Mead. Fabrication of flexible polymer molds for polymer microstructuring by roll-to-roll hot embossing. ACS Omega, 2019, 4(7): 12480–12488 https://doi.org/10.1021/acsomega.9b01468
pmid: 31460367
118
A Striegel, M Schneider, N Schneider, C Benkel, M Worgull. Seamless tool fabrication for roll-to-roll microreplication. Microelectronic Engineering, 2018, 194(1): 8–14 https://doi.org/10.1016/j.mee.2018.02.022
119
X Q Zhang, R Huang, K Liu, A S Kumar, X C Shan. Rotating-tool diamond turning of Fresnel lenses on a roller mold for manufacturing of functional optical film. Precision Engineering, 2018, 51(1): 445–457 https://doi.org/10.1016/j.precisioneng.2017.09.016
120
Y H Lee, K C Ke, N W Chang, S Y Yang. Development of an UV rolling system for fabrication of micro/nano structure on polymeric films using a gas-roller-sustained seamless PDMS mold. Microsystem Technologies, 2018, 24(7): 2941–2948 https://doi.org/10.1007/s00542-017-3683-3
121
C R Lee, J G Ok, M Y Jeong. Nanopatterning on the cylindrical surface using an e-beam pre-mapping algorithm. Journal of Micromechanics and Microengineering, 2019, 29(1): 015004 https://doi.org/10.1088/1361-6439/aaea48
122
J J Dumond, H Y Low, H P Lee, J Y H Fuh. Multi-functional silicone stamps for reactive release agent transfer in UV roll-to-roll nanoimprinting. Materials Horizons, 2016, 3(2): 152–160 https://doi.org/10.1039/C5MH00290G
123
T W Odom, J C Love, D B Wolfe, K E Paul, G M Whitesides. Improved pattern transfer in soft lithography using composite stamps. Langmuir, 2002, 18(13): 5314–5320 https://doi.org/10.1021/la020169l
124
S Kim, S Hyun, J Lee, K S Lee, W Lee, J K Kim. Anodized aluminum oxide/polydimethylsiloxane hybrid mold for roll-to-roll nanoimprinting. Advanced Functional Materials, 2018, 28(23): 1800197 https://doi.org/10.1002/adfm.201800197
125
K Ansari, J Kan, A A Bettiol, F Watt. Stamps for nanoimprint lithography fabricated by proton beam writing and nickel electroplating. Journal of Micromechanics and Microengineering, 2006, 16(10): 1967–1974 https://doi.org/10.1088/0960-1317/16/10/008
126
F Liu, K B Tan, P Malar, S K Bikkarolla, J A van Kan. Fabrication of nickel molds using proton beam writing for micro/nano fluidic devices. Microelectronic Engineering, 2013, 102(1): 36–39 https://doi.org/10.1016/j.mee.2012.05.020
127
X Lin, X Dou, X Wang, R T Chen. Nickel electroplating for nanostructure mold fabrication. Journal of Nanoscience and Nanotechnology, 2011, 11(8): 7006–7010 https://doi.org/10.1166/jnn.2011.4236
pmid: 22103113
128
M K Kwak, J G Ok, S H Lee, L J Guo. Visually tolerable tiling (VTT) for making a large-area flexible patterned surface. Materials Horizons, 2015, 2(1): 86–90 https://doi.org/10.1039/C4MH00159A
129
J G Ok, S H Ahn, M K Kwak, L J Guo. Continuous and high-throughput nanopatterning methodologies based on mechanical deformation. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2013, 1(46): 7681–7691 https://doi.org/10.1039/c3tc30908h
130
J G Ok, Y J Shin, H J Park, L J Guo. A step toward next-generation nanoimprint lithography: extending productivity and applicability. Applied Physics A, Materials Science & Processing, 2015, 121(2): 343–356 https://doi.org/10.1007/s00339-015-9229-6
131
J G Ok, H J Park, M K Kwak, C A Pina-Hernandez, S H Ahn, L J Guo. Continuous patterning of nanogratings by nanochannel-guided lithography on liquid resists. Advanced Materials, 2011, 23(38): 4444–4448 https://doi.org/10.1002/adma.201102199
pmid: 21882262
132
S H Ahn, L J Guo. Dynamic nanoinscribing for continuous and seamless metal and polymer nanogratings. Nano Letters, 2009, 9(12): 4392–4397 https://doi.org/10.1021/nl902682d
pmid: 19839580
133
D K Oh, D T Nguyen, S Lee, P Ko, G S Heo, C H Yun, T W Ha, H Youn, J G Ok. Facile and scalable fabrication of flexible reattachable ionomer nanopatterns by continuous multidimensional nanoinscribing and low-temperature roll imprinting. ACS Applied Materials & Interfaces, 2019, 11(12): 12070–12076 https://doi.org/10.1021/acsami.8b21915
pmid: 30843383
134
D K Oh, S Lee, S H Lee, W Lee, G Yeon, N Lee, K S Han, S Jung, D H Kim, D Y Lee, S H Lee, H J Park, J G Ok. Tailored nanopatterning by controlled continuous nanoinscribing with tunable shape, depth, and dimension. ACS Nano, 2019, 13(10): 11194–11202 https://doi.org/10.1021/acsnano.9b04221
pmid: 31593432
135
S H Ahn, J G Ok, M K Kwak, K T Lee, J Y Lee, L J Guo. Template-free vibrational indentation patterning (VIP) of micro/nanometer-scale grating structures with real-time pitch and angle tunability. Advanced Functional Materials, 2013, 23(37): 4739–4744 https://doi.org/10.1002/adfm.201300293
136
J G Ok, A Panday, T Lee, L Jay Guo. Continuous fabrication of scalable 2-dimensional (2D) micro- and nanostructures by sequential 1D mechanical patterning processes. Nanoscale, 2014, 6(24): 14636–14642 https://doi.org/10.1039/C4NR05567E
pmid: 25363145
137
D Ahiboz, P Manley, C Becker. Adjustable large-area dielectric metasurfaces for near-normal oblique incident excitation. OSA Continuum, 2020, 3(4): 971–981 https://doi.org/10.1364/OSAC.391940
138
J Zhu, Z Wang, S Lin, S Jiang, X Liu, S Guo. Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosensors & Bioelectronics, 2020, 150(1): 111905 https://doi.org/10.1016/j.bios.2019.111905
pmid: 31791874
139
T Das Gupta, L Martin-Monier, W Yan, A Le Bris, T Nguyen-Dang, A G Page, K T Ho, F Yesilköy, H Altug, Y Qu, F Sorin. Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities. Nature Nanotechnology, 2019, 14(4): 320–327 https://doi.org/10.1038/s41565-019-0362-9
pmid: 30742133
140
A V Shneidman, K P Becker, M A Lukas, N Torgerson, C Wang, O Reshef, M J Burek, K Paul, J McLellan, M Lončar. All-polymer integrated optical resonators by roll-to-roll nanoimprint lithography. ACS Photonics, 2018, 5(5): 1839–1845 https://doi.org/10.1021/acsphotonics.8b00022
141
C Zhang, P Yi, L Peng, X Lai, J Chen, M Huang, J Ni. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate. Scientific Reports, 2017, 7(1): 39814 https://doi.org/10.1038/srep39814
pmid: 28051175
142
V Suresh, L Ding, A B Chew, F L Yap. Fabrication of large-area flexible SERS substrates by nanoimprint lithography. ACS Applied Nano Materials, 2018, 1(2): 886–893 https://doi.org/10.1021/acsanm.7b00295
143
Y Deng, P Yi, L Peng, X Lai, Z Lin. Experimental investigation on the large-area fabrication of micro-pyramid arrays by roll-to-roll hot embossing on PVC film. Journal of Micromechanics and Microengineering, 2014, 24(4): 045023 https://doi.org/10.1088/0960-1317/24/4/045023
144
E Højlund-Nielsen, J Clausen, T Mäkela, L H Thamdrup, M Zalkovskij, T Nielsen, N Li Pira, J Ahopelto, N A Mortensen, A Kristensen. Plasmonic colors: toward mass production of metasurfaces. Advanced Materials Technologies, 2016, 1(7): 1600054 https://doi.org/10.1002/admt.201600054
145
S Murthy, H Pranov, N A Feidenhans’l, J S Madsen, P E Hansen, H C Pedersen, R Taboryski. Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method. Nanoscale, 2017, 9(37): 14280–14287 https://doi.org/10.1039/C7NR05498J
pmid: 28914951
146
J G Ok, H S Youn, M K Kwak, K T Lee, Y J Shin, L J Guo, A Greenwald, Y S Liu. Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters. Applied Physics Letters, 2012, 101(22): 223102 https://doi.org/10.1063/1.4767995
147
J S Wi, S Lee, S H Lee, D K Oh, K T Lee, I Park, M K Kwak, J G Ok. Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors. Nanoscale, 2017, 9(4): 1398–1402 https://doi.org/10.1039/C6NR08387K
pmid: 28070589
148
J S Wi, D K Oh, M K Kwak, J G Ok. Size-dependent detection sensitivity of spherical particles sitting on a double-bent gold strip array. Optical Materials Express, 2018, 8(7): 1774–1779 https://doi.org/10.1364/OME.8.001774
149
S Jeon, D J Shir, Y S Nam, R Nidetz, M Highland, D G Cahill, J A Rogers, M F Su, I F El-Kady, C G Christodoulou, G R Bogart. Molded transparent photopolymers and phase shift optics for fabricating three dimensional nanostructures. Optics Express, 2007, 15(10): 6358–6366 https://doi.org/10.1364/OE.15.006358
pmid: 19546940
150
J H Choi, C M Oh, J W Jang. Micro- and nano-patterns fabricated by embossed microscale stamp with trenched edges. RSC Advances, 2017, 7(51): 32058–32064 https://doi.org/10.1039/C7RA05262F
151
T Yanagishita, K Murakoshi, T Kondo, H Masuda. Preparation of superhydrophobic surfaces with micro/nano alumina molds. RSC Advances, 2018, 8(64): 36697–36704 https://doi.org/10.1039/C8RA07497F
152
S J Kim, P H Jung, W Kim, H Lee, S H Hong. Generation of highly integrated multiple vivid colours using a three-dimensional broadband perfect absorber. Scientific Reports, 2019, 9(1): 14859 https://doi.org/10.1038/s41598-019-49906-3
pmid: 31619698
153
H E Jeong, J K Lee, H N Kim, S H Moon, K Y Suh. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(14): 5639–5644 https://doi.org/10.1073/pnas.0900323106
pmid: 19304801
154
P Karageorgiev, D Neher, B Schulz, B Stiller, U Pietsch, M Giersig, L Brehmer. From anisotropic photo-fluidity towards nanomanipulation in the optical near-field. Nature Materials, 2005, 4(9): 699–703 https://doi.org/10.1038/nmat1459
pmid: 16113680
155
J Choi, W Cho, Y S Jung, H S Kang, H T Kim. Direct fabrication of micro/nano-patterned surfaces by vertical-directional photofluidization of azobenzene materials. ACS Nano, 2017, 11(2): 1320–1327 https://doi.org/10.1021/acsnano.6b05934
pmid: 28080024
156
J Choi, W Jo, S Y Lee, Y S Jung, S H Kim, H T Kim. Flexible and robust superomniphobic surfaces created by localized photofluidization of azopolymer pillars. ACS Nano, 2017, 11(8): 7821–7828 https://doi.org/10.1021/acsnano.7b01783
pmid: 28715178
157
Z Liu, Q Cui, Z Huang, L J Guo. Transparent colored display enabled by flat glass waveguide and nanoimprinted multilayer gratings. ACS Photonics, 2020, 7(6): 1418–1424 https://doi.org/10.1021/acsphotonics.9b01803
158
R Kothari, M R Beaulieu, N R Hendricks, S Li, J J Watkins. Direct patterning of robust one-dimensional, two-dimensional, and three-dimensional crystalline metal oxide nanostructures using imprint lithography and nanoparticle dispersion inks. Chemistry of Materials, 2017, 29(9): 3908–3918 https://doi.org/10.1021/acs.chemmater.6b05398
159
W Li, Y Zhou, I R Howell, Y Gai, A R Naik, S Li, K R Carter, J J Watkins. Direct imprinting of scalable, high-performance woodpile electrodes for three-dimensional lithium-ion nanobatteries. ACS Applied Materials & Interfaces, 2018, 10(6): 5447–5454 https://doi.org/10.1021/acsami.7b14649
pmid: 29369613
160
D M Liu, Q K Wang, Q Wang. Transfer the multiscale texture of crystalline Si onto thin-film micromorph cell by UV nanoimprint for light trapping. Applied Surface Science, 2018, 439(1): 168–175 https://doi.org/10.1016/j.apsusc.2017.12.223
161
J Choi, Z Jia, S Park. Fabrication of polymeric dual-scale nanoimprint molds using a polymer stencil membrane. Microelectronic Engineering, 2018, 199(1): 101–105 https://doi.org/10.1016/j.mee.2018.07.009
pmid: 31011235
162
K S Han, S H Hong, K I Kim, J Y Cho, K W Choi, H Lee. Fabrication of 3D nano-structures using reverse imprint lithography. Nanotechnology, 2013, 24(4): 045304 https://doi.org/10.1088/0957-4484/24/4/045304
pmid: 23291434
163
Y W Kwon, J Park, T Kim, S H Kang, H Kim, J Shin, S Jeon, S W Hong. Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar substrates for biomimetic hierarchical photonic structures. ACS Nano, 2016, 10(4): 4609–4617 https://doi.org/10.1021/acsnano.6b00816
pmid: 26981613
164
C Wang, J Shao, D Lai, H Tian, X Li. Suspended-template electric-assisted nanoimprinting for hierarchical micro-nanostructures on a fragile substrate. ACS Nano, 2019, 13(9): 10333–10342 https://doi.org/10.1021/acsnano.9b04031
pmid: 31437390
165
A Chandramohan, N V Sibirev, V G Dubrovskii, M C Petty, A J Gallant, D A Zeze. Model for large-area monolayer coverage of polystyrene nanospheres by spin coating. Scientific Reports, 2017, 7(1): 40888 https://doi.org/10.1038/srep40888
pmid: 28102358
166
M Nakagawa, A Nakaya, Y Hoshikawa, S Ito, N Hiroshiba, T Kyotani. Size-dependent filling behavior of UV-curable di(meth)acrylate resins into carbon-coated anodic aluminum oxide pores of around 20 nm. ACS Applied Materials & Interfaces, 2016, 8(44): 30628–30634 https://doi.org/10.1021/acsami.6b10561
pmid: 27767296
167
F Hua, Y G Sun, A Gaur, M A Meitl, L Bilhaut, L Rotkina, J F Wang, P Geil, M Shim, J A Rogers, A Shim. Polymer imprint lithography with molecular-scale resolution. Nano Letters, 2004, 4(12): 2467–2471 https://doi.org/10.1021/nl048355u
168
W Yim, S J Park, S Y Han, Y H Park, S W Lee, H J Park, Y H Ahn, S Lee, J Y Park. Carbon nanotubes as etching masks for the formation of polymer nanostructures. ACS Applied Materials & Interfaces, 2017, 9(50): 44053–44059 https://doi.org/10.1021/acsami.7b18035
pmid: 29188997
J Y Woo, S Jo, J H Oh, J T Kim, C S Han. Facile and precise fabrication of 10-nm nanostructures on soft and hard substrates. Applied Surface Science, 2019, 484(1): 317–325 https://doi.org/10.1016/j.apsusc.2019.04.035
E Menumerov, S D Golze, R A Hughes, S Neretina. Arrays of highly complex noble metal nanostructures using nanoimprint lithography in combination with liquid-phase epitaxy. Nanoscale, 2018, 10(38): 18186–18194 https://doi.org/10.1039/C8NR06874G
pmid: 30246850
173
C Pina-Hernandez, P F Fu, L J Guo. Ultrasmall structure fabrication via a facile size modification of nanoimprinted functional silsesquioxane features. ACS Nano, 2011, 5(2): 923–931 https://doi.org/10.1021/nn102127z
pmid: 21210695
174
Y H Yao, Y F Wang, H Liu, Y R Li, B X Song, W Wu. Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography. Applied Physics A, Materials Science & Processing, 2015, 121(2): 399–403 https://doi.org/10.1007/s00339-015-9278-x
Z Liu. One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures. Nature Communications, 2017, 8(1): 14910 https://doi.org/10.1038/ncomms14910
pmid: 28348374
177
S Bhadauriya, X Wang, P Pitliya, J Zhang, D Raghavan, M R Bockstaller, C M Stafford, J F Douglas, A Karim. Tuning the relaxation of nanopatterned polymer films with polymer-grafted nanoparticles: observation of entropy-enthalpy compensation. Nano Letters, 2018, 18(12): 7441–7447 https://doi.org/10.1021/acs.nanolett.8b02514
pmid: 30398875
178
L Liu, Q Zhang, Y S Lu, W Du, B Li, Y S Cui, C S Yuan, P Zhan, H X Ge, Z L Wang, Y F Chen. A high-performance and low cost SERS substrate of plasmonic nanopillars on plastic film fabricated by nanoimprint lithography with AAO template. AIP Advances, 2017, 7(6): 065205 https://doi.org/10.1063/1.4985270
179
Y Jung, I Hwang, J Yu, J Lee, J H Choi, J H Jeong, J Y Jung, J Lee. Fano metamaterials on nanopedestals for plasmon-enhanced infrared spectroscopy. Scientific Reports, 2019, 9(1): 7834 https://doi.org/10.1038/s41598-019-44396-9
pmid: 31127173
180
Y H Yao, W Wu. All-dielectric heterogeneous metasurface as an efficient ultra-broadband reflector. Advanced Optical Materials, 2017, 5(14): 1700090 https://doi.org/10.1002/adom.201700090
181
H Hemmati, R Magnusson. Resonant dual-grating metamembranes supporting spectrally narrow bound states in the continuum. Advanced Optical Materials, 2019, 7(20): 1900754 https://doi.org/10.1002/adom.201900754
182
C Zhang, H Subbaraman, Q Li, Z Pan, J G Ok, T Ling, C J Chung, X Zhang, X Lin, R T Chen, L J Guo. Printed photonic elements: nanoimprinting and beyond. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2016, 4(23): 5133–5153 https://doi.org/10.1039/C6TC01237J
183
K T Lee, J Y Jang, S J Park, C G Ji, S M Yang, L J Guo, H J Park. Angle-insensitive and CMOS-compatible subwavelength color printing. Advanced Optical Materials, 2016, 4(11): 1696–1702 https://doi.org/10.1002/adom.201600287
184
H Liu, H Yang, Y R Li, B X Song, Y F Wang, Z R Liu, L Peng, H Lim, J Yoon, W Wu. Switchable all-dielectric metasurfaces for full-color reflective display. Advanced Optical Materials, 2019, 7(8): 1801639 https://doi.org/10.1002/adom.201801639
185
W J Joo, J Kyoung, M Esfandyarpour, S H Lee, H Koo, S Song, Y N Kwon, S H Song, J C Bae, A Jo, M J Kwon, S H Han, S H Kim, S Hwang, M L Brongersma. Metasurface-driven OLED displays beyond 10000 pixels per inch. Science, 2020, 370(6515): 459–463 https://doi.org/10.1126/science.abc8530
pmid: 33093108
186
G Yoon, K Kim, S U Kim, S Han, H Lee, J Rho. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 2021, 15(1): 698–706 https://doi.org/10.1021/acsnano.0c06968
pmid: 33385188
187
S Checcucci, T Bottein, M Gurioli, L Favre, D Grosso, M Abbarchi. Multifunctional metasurfaces based on direct nanoimprint of titania sol-gel coatings. Advanced Optical Materials, 2019, 7(10): 1801406 https://doi.org/10.1002/adom.201801406
188
K Kim, G Yoon, S Baek, J Rho, H Lee. Facile nanocasting of dielectric metasurfaces with sub-100 nm resolution. ACS Applied Materials & Interfaces, 2019, 11(29): 26109–26115 https://doi.org/10.1021/acsami.9b07774
pmid: 31262166
189
G Yoon, K Kim, D Huh, H Lee, J Rho. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nature Communications, 2020, 11(1): 2268 https://doi.org/10.1038/s41467-020-16136-5
pmid: 32385266
190
K K Gopalan, B Paulillo, D M A Mackenzie, D Rodrigo, N Bareza, P R Whelan, A Shivayogimath, V Pruneri. Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics. Nano Letters, 2018, 18(9): 5913–5918 https://doi.org/10.1021/acs.nanolett.8b02613
pmid: 30114919
191
Z J Zhao, M Lee, H Kang, S Hwang, S Jeon, N Park, S H Park, J H Jeong. Eight inch wafer-scale flexible polarization-dependent color filters with Ag-TiO2 composite nanowires. ACS Applied Materials & Interfaces, 2018, 10(10): 9188–9196 https://doi.org/10.1021/acsami.8b02128
pmid: 29460628
192
L Driencourt, F Federspiel, D Kazazis, L T Tseng, R Frantz, Y Ekinci, R Ferrini, B Gallinet. Electrically tunable multicolored filter using birefringent plasmonic resonators and liquid crystals. ACS Photonics, 2020, 7(2): 444–453 https://doi.org/10.1021/acsphotonics.9b01404
193
Y J Shin, C Pina-Hernandez, Y K Wu, J G Ok, L J Guo. Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting. Nanotechnology, 2012, 23(34): 344018 https://doi.org/10.1088/0957-4484/23/34/344018
pmid: 22885707
194
C Matricardi, J L Garcia-Pomar, P Molet, L A Perez, M I Alonso, M Campoy-Quiles, A Mihi. High-throughput nanofabrication of metasurfaces with polarization-dependent response. Advanced Optical Materials, 2020, 8(20): 2000786 https://doi.org/10.1002/adom.202000786
195
G Yoon, K Kim, S U Kim, S Han, H Lee, J Rho. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 2021, 15(1): 698–706 https://doi.org/10.1021/acsnano.0c06968
pmid: 33385188
196
Y Yang, G Yoon, S Park, S D Namgung, T Badloe, K T Nam, J Rho. Revealing structural disorder in hydrogenated amorphous silicon for a low-loss photonic platform at visible frequencies. Advanced Materials, 2021, 33(9): e2005893 https://doi.org/doi:10.1002/adma.202005893
pmid: 33511758
197
D K Oh, H Jeong, J Kim, Y Kim, I Kim, J G Ok, J Rho. Top-down nanofabrication approaches toward single-digit-nanometer scale structures. Journal of Mechanical Science and Technology, 20201, 35(3): 837–859 https://doi.org/doi:10.1007/s12206-021-0243-7
198
T Stolt , J Kim, S Héron, A Vesala, Y Yang, J Mun, M Kim, M J Huttunen, R Czaplicki, M Kauranen, J Rho, P Genevet. Backward phase-matched second-harmonic generation from stacked metasurfaces. Physical Review Letters, 2021, 126(3): 033901 https://doi.org/10.1103/PhysRevLett.126.033901
pmid: 33543948
199
D Lee, M Go, M Kim, J Jang, C Choi, J K Kim, J Rho. Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared. Microsystems & Nanoengineering, 2021, 7(1): 14 https://doi.org/doi:10.1038/s41378-020-00237-8
200
I Kim, M A Ansari, M Q Mehmood, W S Kim, J Jang, M Zubair, Y K Kim, J Rho. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Advanced Materials, 2020, 32(50): e2004664 https://doi.org/10.1002/adma.202004664
pmid: 33169455
M A Naveed, M A Ansari, I Kim, T Badloe, J Kim, D K Oh, K Riaz, T Tauqeer, U Younis, M Saleem, M S Anwar, M Zubair, M Q Mehmood, J Rho. Optical spin-symmetry breaking for high-efficiency directional helicity-multiplexed metaholograms. Microsystems & Nanoengineering, 2021, 7(1): 5 https://doi.org/10.1038/s41378-020-00226-x