Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

邮发代号 80-976

Frontiers of Optoelectronics  2023, Vol. 16 Issue (2): 16   https://doi.org/10.1007/s12200-023-00071-6
  本期目录
Impact of film thickness in laser-induced periodic structures on amorphous Si films
Liye Xu1,2,3,4, Jiao Geng2,4(), Liping Shi2,4,5, Weicheng Cui3,4(), Min Qiu2,4()
1. College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, China
2. Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
3. Key Laboratory of Coastal Environment and Resources of Zhejiang Province (KLaCER), School of Engineering, Westlake University, Hangzhou 310024, China
4. Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
5. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
 全文: PDF(1324 KB)  
Abstract

We report self-organized periodic nanostructures on amorphous silicon thin films by femtosecond laser-induced oxidation. The dependence of structural periodicity on the thickness of silicon films and the substrate materials is investigated. The results reveal that when silicon film is 200 nm, the period of self-organized nanostructures is close to the laser wavelength and is insensitive to the substrates. In contrast, when the silicon film is 50 nm, the period of nanostructures is much shorter than the laser wavelength, and is dependent on the substrates. Furthermore, we demonstrate that, for the thick silicon films, quasi-cylindrical waves dominate the formation of periodic nanostructures, while for the thin silicon films, the formation originates from slab waveguide modes. Finite-difference time-domain method-based numerical simulations support the experimental discoveries.

Key wordsLaser-induced periodic surface structures (LIPSS)    Ultrafast optoelectronics    Laser nanofabrication    Quasi-cylindrical waves
收稿日期: 2023-01-13      出版日期: 2023-07-04
Corresponding Author(s): Jiao Geng,Weicheng Cui,Min Qiu   
 引用本文:   
. [J]. Frontiers of Optoelectronics, 2023, 16(2): 16.
Liye Xu, Jiao Geng, Liping Shi, Weicheng Cui, Min Qiu. Impact of film thickness in laser-induced periodic structures on amorphous Si films. Front. Optoelectron., 2023, 16(2): 16.
 链接本文:  
https://academic.hep.com.cn/foe/CN/10.1007/s12200-023-00071-6
https://academic.hep.com.cn/foe/CN/Y2023/V16/I2/16
1 M. Caldarola,, P. Albella,, E. Cortés,, M. Rahmani,, T. Roschuk,, G. Grinblat,, R.F. Oulton,, A.V. Bragas,, S.A. Maier,: Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun. 6(1), 7915 (2015)
https://doi.org/10.1038/ncomms8915
2 Y. Yang,, W. Wang,, A. Boulesbaa,, I.I. Kravchenko,, D.P. Briggs,, A. Puretzky,, D. Geohegan,, J. Valentine,: Nonlinear fano-resonant dielectric metasurfaces. Nano. Lett. 15(11), 7388–7393 (2015)
https://doi.org/10.1021/acs.nanolett.5b02802
3 X. Liu,, R.M., Jr. Osgood,, Y.A. Vlasov,, W.M. Green,: Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat. Photonics 4(8), 557–560 (2010)
https://doi.org/10.1038/nphoton.2010.119
4 N. Yu,, F. Capasso,: Flat optics with designer metasurfaces. Nat. Mater. 13(2), 139–150 (2014)
https://doi.org/10.1038/nmat3839
5 I. Staude,, J. Schilling,: Metamaterial-inspired silicon nanophotonics. Nat. Photonics 11(5), 274–284 (2017)
https://doi.org/10.1038/nphoton.2017.39
6 D. Zhang,, L.C. Wu,, M. Ueki,, Y. Ito,, K. Sugioka,: Femtosecond laser shockwave peening ablation in liquids for hierarchical micro/nanostructuring of brittle silicon and its biological application. Int. J. Extreme Manuf. 2(4), 045001 (2020)
https://doi.org/10.1088/2631-7990/abb5f3
7 M. Chambonneau,, D. Richter,, S. Nolte,, D. Grojo,: Inscribing diffraction gratings in bulk silicon with nanosecond laser pulses. Opt Lett 43(24), 6069–6072 (2018)
https://doi.org/10.1364/OL.43.006069
8 M. Wang,, K. Zhao,, J. Wu,, Y. Li,, Y. Yang,, S. Huang,, J. Zhao,, T. Tweedle,, D. Carpenter,, G. Zheng,, Q. Yu,, K.P. Chen,: Femtosecond laser fabrication of nanograting-based distributed fiber sensors for extreme environmen tal applications. Int. J. Extreme Manuf. 3(2), 025401 (2021)
https://doi.org/10.1088/2631-7990/abe171
9 I. Pavlov,, O. Tokel,, S. Pavlova,, V. Kadan,, G. Makey,, A. Turnali,, Ö. Yavuz,, F.Ö. Ilday,: Femtosecond laser written waveguides deep inside silicon. Opt. Lett. 42(15), 3028–3031 (2017)
https://doi.org/10.1364/OL.42.003028
10 O. Tokel,, A. Turnali,, G. Makey,, P. Elahi,, T. Çolakoğlu,, E. Ergeçen,, Ö. Yavuz,, R. Hübner,, M.Z. Borra,, I. Pavlov,, A. Bek,, R. Turan,, D.K. Kesim,, S. Tozburun,, S. Ilday,, F.Ö. Ilday,: In-chip microstructures and photonic devices fabricated by non-linear laser lithography deep inside silicon. Nat. Photonics 11(10), 639–645 (2017)
https://doi.org/10.1038/s41566-017-0004-4
11 J. Sipe,, J.F. Young,, J. Preston,, H. Van Driel,: Laser-induced periodic surface structure. I. Theory. Phys. Rev. B Condens. Matter. 27(2), 1141–1154 (1983)
https://doi.org/10.1103/PhysRevB.27.1141
12 J. Bonse,, S. Gräf,: Maxwell meets marangoni—a review of theories on laser-induced periodic surface structures. Laser Photonics Rev. 14(10), 2000215 (2020)
https://doi.org/10.1002/lpor.202000215
13 P. Fauchet,, A. Siegman,: Surface ripples on silicon and gallium arsenide under picosecond laser illumination. Appl. Phys. Lett. 40(9), 824–826 (1982)
https://doi.org/10.1063/1.93274
14 Z. Guosheng,, P. Fauchet,, A. Siegman,: Growth of spontaneous periodic surface structures on solids during laser illumination. Phys. Rev. B Condens. Matter 26(10), 5366–5381 (1982)
https://doi.org/10.1103/PhysRevB.26.5366
15 M. Birnbaum,: Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 36(11), 3688–3689 (1965)
https://doi.org/10.1063/1.1703071
16 A. Borowiec,, H. Haugen,: Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82(25), 4462–4464 (2003)
https://doi.org/10.1063/1.1586457
17 J. Bonse,, S. Baudach,, J. Krüger,, W. Kautek,, M. Lenzner,: Femtosecond laser ablation of silicon–modification thresholds and morphology. Appl. Phys. A Mater. Sci. Process. 74(1), 19–25 (2002)
https://doi.org/10.1007/s003390100893
18 Y. Shimotsuma,, P.G. Kazansky,, J. Qiu,, K. Hirao,: Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91(24), 247405 (2003)
https://doi.org/10.1103/PhysRevLett.91.247405
19 T.Y. Derrien,, R. Torres,, T. Sarnet,, M. Sentis,, T.E. Itina,: Formation of femtosecond laser induced surface structures on silicon: insights from numerical modeling and single pulse experiments. Appl. Surf. Sci. 258(23), 9487–9490 (2012)
https://doi.org/10.1016/j.apsusc.2011.10.084
20 E. Golosov,, A. Ionin,, Y.R. Kolobov,, S. Kudryashov,, A. Ligachev,, S. Makarov,, Y.N. Novoselov,, L. Seleznev,, D. Sinitsyn,: Formation of periodic nanostructures on aluminum surface by femtosecond laser pulses. Nanotechnol. Russ. 6(3), 237–243 (2011)
https://doi.org/10.1134/S199507801102008X
21 J. Huang,, Y. Liu,, S. Jin,, Z. Wang,, Y. Qi,, J. Zhang,, K. Wang,, R. Qiu,: Uniformity control of laser-induced periodic surface structures. Front. Phys. (Lausanne) 10, 932284 (2022)
https://doi.org/10.3389/fphy.2022.932284
22 I. Gnilitskyi,, T.J.Y. Derrien,, Y. Levy,, N.M. Bulgakova,, T. Mocek,, L. Orazi,: High-speed manufacturing of highly regular femto-second laser-induced periodic surface structures: physical origin of regularity. Sci. Rep. 7(1), 8485 (2017)
https://doi.org/10.1038/s41598-017-08788-z
23 Y. Levy,, T.J.Y. Derrien,, N.M. Bulgakova,, E.L. Gurevich,, T. Mocek,: Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors. Appl. Surf. Sci. 374, 157–164 (2016)
https://doi.org/10.1016/j.apsusc.2015.10.159
24 A. Ruiz de la Cruz,, R. Lahoz,, J. Siegel,, G.F. de la Fuente,, J. Solis,: High speed inscription of uniform, large-area laser-induced periodic surface structures in Cr films using a high repetition rate fs laser. Opt. Lett. 39(8), 2491–2494 (2014)
https://doi.org/10.1364/OL.39.002491
25 A.V. Dostovalov,, T.J.Y. Derrien,, S.A. Lizunov,, F. Přeučil,, K.A. Okotrub,, T. Mocek,, V.P. Korolkov,, S.A. Babin,, N.M. Bulgakova,: LIPSS on thin metallic films: new insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation. Appl. Surf. Sci. 491, 650–658 (2019)
https://doi.org/10.1016/j.apsusc.2019.05.171
26 H.D. Yang,, X.H. Li,, G.Q. Li,, C. Wen,, R. Qiu,, W.H. Huang,, J.B. Wang,: Formation of colorized silicon by femtosecond laser pulses indifferent background gases. Appl. Phys. A Mater. Sci. Process. 104(2), 749–753 (2011)
https://doi.org/10.1007/s00339-011-6340-1
27 Y. Zhang,, Q. Jiang,, K. Cao,, T. Chen,, K. Cheng,, S. Zhang,, D. Feng,, T. Jia,, Z. Sun,, J. Qiu,: Extremely regular periodic surface structures in a large area efficiently induced on silicon by temporally shaped femtosecond laser. Photon. Res. 9(5), 839–847 (2021)
https://doi.org/10.1364/PRJ.418937
28 I. Gnilitskyi,, V. Gruzdev,, N.M. Bulgakova,, T. Mocek,, L. Orazi,: Mechanisms of high-regularity periodic structuring of silicon surface by sub-mhz repetition rate ultrashort laser pulses. Appl. Phys. Lett. 109(14), 143101 (2016)
https://doi.org/10.1063/1.4963784
29 L. Wang,, Q.D. Chen,, X.W. Cao,, R. Buividas,, X. Wang,, S. Juodkazis,, H.B. Sun,: Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light Sci. Appl. 6(12), e17112 (2017)
https://doi.org/10.1038/lsa.2017.112
30 L. Jiang,, A.D. Wang,, B. Li,, T.H. Cui,, Y.F. Lu,: Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci. Appl. 7(2), 17134 (2017)
https://doi.org/10.1038/lsa.2017.134
31 B. Öktem,, I. Pavlov,, S. Ilday,, H. Kalaycıoğlu,, A. Rybak,, S. Yavas,, M. Erdoğan,, F.O. Ilday,: Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photonics 7(11), 897–901 (2013)
https://doi.org/10.1038/nphoton.2013.272
32 J. Geng,, L. Shi,, X. Sun,, W. Yan,, M. Qiu,: Artificial seeds-regulated femtosecond laser plasmonic nanopatterning. Laser Photonics Rev. 16(11), 2200232 (2022)
https://doi.org/10.1002/lpor.202200232
33 J. Geng,, W. Yan,, L. Shi,, M. Qiu,: Surface plasmons interference nanogratings: wafer-scale laser direct structuring in seconds. Light Sci. Appl. 11(1), 189 (2022)
https://doi.org/10.1038/s41377-022-00883-9
34 A.V. Dostovalov,, V.P. Korolkov,, K.A. Okotrub,, K.A. Bronnikov,, S.A. Babin,: Oxide composition and period variation of thermochemical LIPSS on chromium films with different thickness. Opt. Express 26(6), 7712–7723 (2018)
https://doi.org/10.1364/OE.26.007712
35 A. Dostovalov,, K. Bronnikov,, V. Korolkov,, S. Babin,, E. Mitsai,, A. Mironenko,, M. Tutov,, D. Zhang,, K. Sugioka,, J. Maksimovic,, T. Katkus,, S. Juodkazis,, A. Zhizhchenko,, A. Kuchmizhak,: Hierarchical anti-reflective laser-induced periodic surface structures (LIPSSs) on amorphous Si films for sensing applications. Nanoscale 12(25), 13431–13441 (2020)
https://doi.org/10.1039/D0NR02182B
36 J. Geng,, X. Fang,, L. Zhang,, G. Yao,, L. Xu,, F. Liu,, W. Tang,, L. Shi,, M. Qiu,: Controllable generation of large-scale highly regular gratings on Si films. Light Adv. Manuf 2(3), 274–282 (2021)
https://doi.org/10.37188/lam.2021.022
37 J. Geng,, W. Yan,, L. Shi,, M. Qiu,: Quasicylindrical waves for ordered nanostructuring. Nano Lett. 22(23), 9658–9663 (2022)
https://doi.org/10.1021/acs.nanolett.2c03851
38 F. van Beijnum,, C. Rétif,, C.B. Smiet,, H. Liu,, P. Lalanne,, M.P. van Exter,: Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission. Nature 492(7429), 411–414 (2012)
https://doi.org/10.1038/nature11669
[1] Supplementary materials Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed