Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

邮发代号 80-976

Frontiers of Optoelectronics  2024, Vol. 17 Issue (4): 33   https://doi.org/10.1007/s12200-024-00133-3
  本期目录
Information processing at the speed of light
Muhammad AbuGhanem()
Faculty of Science, Ain Shams University, Cairo 11566, Egypt
 全文: PDF(5650 KB)  
Abstract

In recent years, quantum computing has made significant strides, particularly in light-based technology. The introduction of quantum photonic chips has ushered in an era marked by scalability, stability, and cost-effectiveness, paving the way for innovative possibilities within compact footprints. This article provides a comprehensive exploration of photonic quantum computing, covering key aspects such as encoding information in photons, the merits of photonic qubits, and essential photonic device components including light squeezers, quantum light sources, interferometers, photodetectors, and wave-guides. The article also examines photonic quantum communication and internet, and its implications for secure systems, detailing implementations such as quantum key distribution and long-distance communication. Emerging trends in quantum communication and essential reconfigurable elements for advancing photonic quantum internet are discussed. The review further navigates the path towards establishing scalable and fault-tolerant photonic quantum computers, highlighting quantum computational advantages achieved using photons. Additionally, the discussion extends to programmable photonic circuits, integrated photonics and transformative applications. Lastly, the review addresses prospects, implications, and challenges in photonic quantum computing, offering valuable insights into current advancements and promising future directions in this technology.

Key wordsPhotonics quantum computing    Nobel Prize-winning technology    Integrated photonics    Photonic device components    Encoding information in photons    Programmable photonic circuits    Photonic quantum computers    Quantum communication and internet    Quantum key distribution    Free-space communication    Quantum computational advantage with photons
收稿日期: 2024-05-28      出版日期: 2024-10-14
Corresponding Author(s): Muhammad AbuGhanem   
 引用本文:   
. [J]. Frontiers of Optoelectronics, 2024, 17(4): 33.
Muhammad AbuGhanem. Information processing at the speed of light. Front. Optoelectron., 2024, 17(4): 33.
 链接本文:  
https://academic.hep.com.cn/foe/CN/10.1007/s12200-024-00133-3
https://academic.hep.com.cn/foe/CN/Y2024/V17/I4/33
1 M. AbuGhanem,, H. Eleuch,: NISQ Computers: a path to quantum supremacy. IEEE Access 12, 102941–102961 (2024)
https://doi.org/10.1109/ACCESS.2024.3432330
2 D. DiVincenzo,: The physical implementation of quantum computation. Fortschr. Phys. 48, 9–11 (2000)
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
3 D. DiVincenzo,, D. Bacon,, J. Kempe,, G. Burkard,, K.B. Whaley,: Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000)
https://doi.org/10.1038/35042541
4 D. DeMille,: Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901(2002)
https://doi.org/10.1103/PhysRevLett.88.067901
5 R. Raussendorf,, D.E. Browne,, H.J. Briegel,: Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312(2003)
https://doi.org/10.1103/PhysRevA.68.022312
6 G. Vidal,: Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902(2003)
https://doi.org/10.1103/PhysRevLett.91.147902
7 A. Blais,, R.S. Huang,, A. Wallraff,, S.M. Girvin,, R.J. Schoelkopf,: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320(2004)
https://doi.org/10.1103/PhysRevA.69.062320
8 P. Walther,, K. Resch,, T. Rudolph,, E. Schenck,, H. Weinfurter,, V. Vedral,, M. Aspelmeyer,, A. Zeilinger,: Experimental one-way quantum computing. Nature 434, 169–176 (2005)
https://doi.org/10.1038/nature03347
9 A. Sørensen,, K. Mølmer,: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971(1999)
https://doi.org/10.1103/PhysRevLett.82.1971
10 S.L. Braunstein,, C.M. Caves,, R. Jozsa,, N. Linden,, S. Popescu,, R. Schack,: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054(1999)
https://doi.org/10.1103/PhysRevLett.83.1054
11 P. Zanardi,, M. Rasetti,: Holonomic quantum computation. Phys. Lett. A 264, 2–3 (1999)
https://doi.org/10.1016/S0375-9601(99)00803-8
12 R. Vrijen,, E. Yablonovitch,, K. Wang,, H.W. Jiang,, A. Balandin,, V. Roychowdhury,, T. Mor,, D. DiVincenzo,: Electron-spinresonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62, 012306(2000)
https://doi.org/10.1103/PhysRevA.62.012306
13 L. Ioffe,, V. Geshkenbein,, M. Feigel’man,, A.L. Fauchère,, G. Blatter,: Environmentally decoupled s-wave Josephson junctions for quantum computing. Nature 398, 679–681 (1999)
https://doi.org/10.1038/19464
14 D. Kielpinski,, C. Monroe,, D. Wineland,: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)
https://doi.org/10.1038/nature00784
15 J. Jones,, V. Vedral,, A. Ekert,, G. Castagnoli,: Geometric quantum computation using nuclear magnetic resonance. Nature 403, 869–871 (2000)
https://doi.org/10.1038/35002528
16 R. Raussendorf,, H.J. Briegel,: A one-way quantum computer. Phys. Rev. Lett. 86, 5188(2001)
https://doi.org/10.1103/PhysRevLett.86.5188
17 M. Leuenberger,, D. Loss,: Quantum computing in molecular magnets. Nature 410, 789–793 (2001)
https://doi.org/10.1038/35071024
18 E. Knill,, R. Laflamme,, G. Milburn,: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)
https://doi.org/10.1038/35051009
19 A.Y. Kitaev,: Fault-tolerant quantum computation by anyons. Ann. Phys. 203, 2–3 (2003)
20 A. Barenco,, C.H. Bennett,, R. Cleve,, D.P. DiVincenzo,, N. Margolus,, P. Shor,, T. Sleator,, J.A. Smolin,, H. Weinfurter,: Elementary gates for quantum computation. Phys. Rev. A 52, 3457(1995)
https://doi.org/10.1103/PhysRevA.52.3457
21 M. AbuGhanem,, H. Eleuch,: Experimental characterization of Google’s Sycamore quantum AI on an IBM’s quantum computer, Elsevier, SSRN 4299338(2023)
https://doi.org/10.2139/ssrn.4299338
22 M. AbuGhanem,, H. Eleuch,: Full quantum tomography study of Google’s Sycamore gate on IBM’s quantum computers. EPJ Quantum Technol. 11(1), 36(2024)
https://doi.org/10.1140/epjqt/s40507-024-00248-8
23 D.P. DiVincenzo,: Quantum computation. Science 270, 5234(1995)
https://doi.org/10.1126/science.270.5234.255
24 T.D. Ladd,, F. Jelezko,, R. Laflamme,, Y. Nakamura,, C. Monroe,, J.L. O’Brien,: Quantum computers. Nature 464, 45(2010)
https://doi.org/10.1038/nature08812
25 M. A. Nielsen,, I. L. Chuang,: Quantum Computation and Quantum Information. 10th anniversary ed., Cambridge University Press (2011)
26 T. L. Scholten,, C. J. Williams,, D. Moody,, M. Mosca,, W. Hurley,, W. J. Zeng,, M. Troyer,, J.M. Gambetta,: Assessing the benefits and risks of quantum computers. arXive preprints arXiv: 2401. 16317 [quant-ph] (2024)
27 R.P. Feynman,: Feynman and Computation. Simulating Physics with Computers. pp. 133–153. Routledge, New York (2018)
28 P. Benioff,: The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J. Stat. Phys. 22(5), 563–591 (1980)
https://doi.org/10.1007/BF01011339
29 D. Deutsch,, R. Jozsa,: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A Math. Phys. Sci. 439(1907), 553–558 (1992)
https://doi.org/10.1098/rspa.1992.0167
30 D. Deutsch,: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985)
https://doi.org/10.1098/rspa.1985.0070
31 E. Bernstein,, U. Vazirani,: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)
https://doi.org/10.1137/S0097539796300921
32 D.R. Simon,: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)
https://doi.org/10.1137/S0097539796298637
33 A.W. Harrow,, A. Montanaro,: Quantum computational supremacy. Nature 549(7671), 203–209 (2017)
https://doi.org/10.1038/nature23458
34 T. Ralph,, G. Pryde,: Optical quantum computation. Prog. Opt. 54, 209–269 (2010)
https://doi.org/10.1016/S0079-6638(10)05409-0
35 P. Kok,, W.J. Munro,, K. Nemoto,, T.C. Ralph,, J.P. Dowling,, G.J. Milburn,: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)
https://doi.org/10.1103/RevModPhys.79.135
36 J.L. Obrien,, A. Furusawa,, J. Vuckovic,: Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009)
https://doi.org/10.1038/nphoton.2009.229
37 S. Takeda,, A. Furusawa,: Toward large-scale fault-tolerant universal photonic quantum computing. APL Photonics 4, 060902(2019)
https://doi.org/10.1063/1.5100160
38 J.L. Obrien,: Optical quantum computing. Science 318(5856), 1567–1570 (2007)
https://doi.org/10.1126/science.1142892
39 F. Flamini,, N. Spagnolo,, F. Sciarrino,: Photonic quantum information processing: a review. Rep. Prog. Phys. 82, 016001(2018)
https://doi.org/10.1088/1361-6633/aad5b2
40 S. Slussarenko,, G.J. Pryde,: Photonic quantum information processing: a concise review. Appl. Phys. Rev. 6(4), 041303(2019)
https://doi.org/10.1063/1.5115814
41 S.K. Liao,, W.Q. Cai,, W.Y. Liu,, L. Zhang,, Y. Li,, J.G. Ren,, J. Yin,, Q. Shen,, Y. Cao,, Z.P. Li,, F.Z. Li,, X.W. Chen,, L.H. Sun,, J.J. Jia,, J.C. Wu,, X.J. Jiang,, J.F. Wang,, Y.M. Huang,, Q. Wang,, Y.L. Zhou,, L. Deng,, T. Xi,, L. Ma,, T. Hu,, Q. Zhang,, Y.A. Chen,, N.L. Liu,, X.B. Wang,, Z.C. Zhu,, C.Y. Lu,, R. Shu,, C.Z. Peng,, J.Y. Wang,, J.W. Pan,: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)
https://doi.org/10.1038/nature23655
42 J.G. Ren,, P. Xu,, H.L. Yong,, L. Zhang,, S.K. Liao,, J. Yin,, W.Y. Liu,, W.Q. Cai,, M. Yang,, L. Li,, K.X. Yang,, X. Han,, Y.Q. Yao,, J. Li,, H.Y. Wu,, S. Wan,, L. Liu,, D.Q. Liu,, Y.W. Kuang,, Z.P. He,, P. Shang,, C. Guo,, R.H. Zheng,, K. Tian,, Z.C. Zhu,, N.L. Liu,, C.Y. Lu,, R. Shu,, Y.A. Chen,, C.Z. Peng,, J.Y. Wang,, J.W. Pan,: Ground-to-satellite quantum teleportation. Nature 549(7670), 70–73 (2017)
https://doi.org/10.1038/nature23675
43 H. Zhong,,H. Wang,, Y. Deng,, M. Chen,, L. Peng,, Y. Luo,, J. Qin,, D. Wu,, X. Ding,, Y. Hu,, P. Hu,, X. Yang,, W. Zhang,, H. Li,, Y. Li,, X. Jiang,, L. Gan,, G. Yang,, L. You,, Z. Wang,, L. Li,, N. Liu,, C. Lu,, J. Pan,: Quantum computational advantage using photons. arXiv: 2012. 01625 v1 [quant-ph] (2020)
44 H.S. Zhong,, Y.H. Deng,, J. Qin,, H. Wang,, M.C. Chen,, L.C. Peng,, Y.H. Luo,, D. Wu,, S.Q. Gong,, H. Su,, Y. Hu,, P. Hu,, X.Y. Yang,, W.J. Zhang,, H. Li,, Y. Li,, X. Jiang,, L. Gan,, G. Yang,, L. You,, Z. Wang,, L. Li,, N.L. Liu,, J.J. Renema,, C.Y. Lu,, J.W. Pan,: Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502(2021)
https://doi.org/10.1103/PhysRevLett.127.180502
45 L.S. Madsen,, F. Laudenbach,, M.F. Askarani,, F. Rortais,, T. Vincent,, J.F.F. Bulmer,, F.M. Miatto,, L. Neuhaus,, L.G. Helt,, M.J. Collins,, A.E. Lita,, T. Gerrits,, S.W. Nam,, V.D. Vaidya,, M. Menotti,, I. Dhand,, Z. Vernon,, N. Quesada,, J. Lavoie,: Quantum computational advantage with a programmable photonic processor. Nature 606(7912), 75–81 (2022)
https://doi.org/10.1038/s41586-022-04725-x
46 J. Carolan,, C. Harrold,, C. Sparrow,, E. Martín-López,, N.J. Russell,, J.W. Silverstone,, P.J. Shadbolt,, N. Matsuda,, M. Oguma,, M. Itoh,, G.D. Marshall,, M.G. Thompson,, J.C.F. Matthews,, T. Hashimoto,, J.L. O’Brien,, A. Laing,: Universal linear optics. Science 349, 711(2015)
https://doi.org/10.1126/science.aab3642
47 X. Qiang,, X. Zhou,, J. Wang,, C.M. Wilkes,, T. Loke,, S. O’Gara,, L. Kling,, G.D. Marshall,, R. Santagati,, T.C. Ralph,, J.B. Wang,, J.L. O’Brien,, M.G. Thompson,, J.C.F. Matthews,: Largescale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics 12, 534–539 (2018)
https://doi.org/10.1038/s41566-018-0236-y
48 R. Santagati,, J.W. Silverstone,, M.J. Strain,, M. Sorel,, S. Miki,, T. Yamashita,, M. Fujiwara,, M. Sasaki,, H. Terai,, M.G. Tanner,, C.M. Natarajan,, R.H. Hadfield,, J.L. O’Brien,, M.G. Thompson,: Silicon photonic processor of two-qubit entangling quantum logic. J. Opt. 19, 114006(2017)
https://doi.org/10.1088/2040-8986/aa8d56
49 C. Taballione,, T.A.W. Wolterink,, J. Lugani,, A. Eckstein,, B.A. Bell,, R. Grootjans,, I. Visscher,, D. Geskus,, C.G.H. Roeloffzen,, J.J. Renema,, I.A. Walmsley,, P.W.H. Pinkse,, K.J. Boller,: 8 × 8 reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt. Express 27, 26842–26857 (2019)
https://doi.org/10.1364/OE.27.026842
50 A. Ribeiro,, A. Ruocco,, L. Vanacker,, W. Bogaerts,: Demonstration of a 4 × 4-port universal linear circuit. Optica 3, 1348–1357 (2016)
https://doi.org/10.1364/OPTICA.3.001348
51 K.I. Koteva,, A.A. Gentile,, B. Flynn,, S. Paesani,, A. Laing,: Silicon quantum photonic device for multidimensional controlled unitaries. In: Frontiers in Optics/ Laser Science. FTu8D.1. Optical Society of America (2020)
https://doi.org/10.1364/FIO.2020.FTu8D.1
52 N.C. Harris,, G.R. Steinbrecher,, M. Prabhu,, Y. Lahini,, J. Mower,, D. Bunandar,, C. Chen,, F.N.C. Wong,, T. Baehr-Jones,, M. Hochberg,, S. Lloyd,, D. Englund,: Quantum transport simulations in a programmable nanophotonic processor. Nat. Photonics 11, 447–452 (2017)
https://doi.org/10.1038/nphoton.2017.95
53 C. Sparrow,, E. Martin-Lopez,, N. Maraviglia,, A. Neville,, C. Harrold,, J. Carolan,, Y.N. Joglekar,, T. Hashimoto,, N. Matsuda,, J.L. O’Brien,, D.P. Tew,, A. Laing,: Simulating the vibrational quantum dynamics of molecules using photonics. Nature 557(7707), 660(2018)
https://doi.org/10.1038/s41586-018-0152-9
54 J. Carolan,, M. Mohseni,, J.P. Olson,, M. Prabhu,, C. Chen,, D. Bunandar,, M.Y. Niu,, N.C. Harris,, F.N.C. Wong,, M. Hochberg,, S. Lloyd,, D. Englund,: Variational quantum unsampling on a quantum photonic processor. Nat. Phys. 16, 322–327 (2020)
https://doi.org/10.1038/s41567-019-0747-6
55 J.B. Spring,, B.J. Metcalf,, P.C. Humphreys,, W.S. Kolthammer,, X. Jin,, M. Barbieri,, A. Datta,, N. Thomaspeter,, N.K. Langford,, D. Kundys,, J.C. Gates,, B.J. Smith,, P.G.R. Smith,, I.A. Walmsley,: Boson sampling on a photonic chip. Science 339(6121), 798(2013)
https://doi.org/10.1126/science.1231692
56 M. Tillmann,, B. Dakić,, R. Heilmann,, S. Nolte,, A. Szameit,, P. Walther,: Experimental boson sampling. Nat. Photonics 7, 540–544 (2013)
https://doi.org/10.1038/nphoton.2013.102
57 P.J. Shadbolt,, M.R. Verde,, A. Peruzzo,, A. Politi,, A. Laing,, M. Lobino,, J.C.F. Matthews,, M.G. Thompson,, J.L. O’Brien,: Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photonics 6, 45–49 (2012)
https://doi.org/10.1038/nphoton.2011.283
58 S. Paesani,, Y. Ding,, R. Santagati,, L. Chakhmakhchyan,, C. Vigliar,, K. Rottwitt,, L.K. Oxenløwe,, J. Wang,, M.G. Thompson,, A. Laing,: Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15, 925–929 (2019)
https://doi.org/10.1038/s41567-019-0567-8
59 G.R. Steinbrecher,, J.P. Olson,, D. Englund,, J. Carolan,: Quantum optical neural networks. Npj Quantum Inf. 5, 60(2019)
https://doi.org/10.1038/s41534-019-0174-7
60 Y. Shen,, N.C. Harris,, S. Skirlo,, M. Prabhu,, T. Baehr-Jones,, M. Hochberg,, X. Sun,, S. Zhao,, H. Larochelle,, D. Englund,, M. Soljačić,: Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017)
https://doi.org/10.1038/nphoton.2017.93
61 A. A. Gentile,, B. Flynn,, S. Knauer,, N. Wiebe,, S. Paesani,, C. Granade,, J. Rarity,, R. Santagati,, A. Laing,: Learning models of quantum systems from experiments. arXiv: 2002.06169(2020)
62 V. Saggio,, B.E. Asenbeck,, A. Hamann,, T. Strömberg,, P. Schiansky,, V. Dunjko,, N. Friis,, N.C. Harris,, M. Hochberg,, D. Englund,, S. Wölk,, H.J. Briegel,, P. Walther,: Experimental quantum speed-up in reinforcement learning agents. Nature 591, 229–233 (2021)
https://doi.org/10.1038/s41586-021-03242-7
63 J. Feldmann,, N. Youngblood,, M. Karpov,, H. Gehring,, X. Li,, M. Stappers,, M. Le Gallo,, X. Fu,, A. Lukashchuk,, A.S. Raja,, J. Liu,, C.D. Wright,, A. Sebastian,, T.J. Kippenberg,, W.H.P. Pernice,, H. Bhaskaran,: Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021)
https://doi.org/10.1038/s41586-020-03070-1
64 L. Zhuang,, C.G. Roeloffzen,, M. Hoekman,, K.J. Boller,, A.J. Lowery,: Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015)
https://doi.org/10.1364/OPTICA.2.000854
65 D. Pérez,, I. Gasulla,, L. Crudgington,, D.J. Thomson,, A.Z. Khokhar,, K. Li,, W. Cao,, G.Z. Mashanovich,, J. Capmany,: Multi-purpose silicon photonics signal processor core. Nat. Commun. 8, 1925(2017)
https://doi.org/10.1038/s41467-017-00714-1
66 Y. Lee,, E. Bersin,, A. Dahlberg,, S. Wehner,, D. Englund,: A quantum router architecture for high-fidelity entanglement flows in quantum networks, arXiv: 2005.01852(2020)
67 K. C. Chen,, E. Bersin,, D. Englund,: A polarization encoded photon-to-spin interface. arXiv: 2004.02381(2020)
68 N.H. Wan,, T.J. Lu,, K.C. Chen,, M.P. Walsh,, M.E. Trusheim,, L. De Santis,, E.A. Bersin,, I.B. Harris,, S.L. Mouradian,, I.R. Christen,, E.S. Bielejec,, D. Englund,: Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020)
https://doi.org/10.1038/s41586-020-2441-3
69 H. Choi,, M. Pant,, S. Guha,, D. Englund,: Percolation based architecture for cluster state creation using photonmediated entanglement between atomic memories. arXiv: 1704.07292(2019)
70 M. Reck,, A. Zeilinger,, H.J. Bernstein,, P. Bertani,: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58(1994)
https://doi.org/10.1103/PhysRevLett.73.58
71 W.R. Clements,, P.C. Humphreys,, B.J. Metcalf,, W.S. Kolthammer,, I.A. Walmsley,: Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016)
https://doi.org/10.1364/OPTICA.3.001460
72 I.L. Chuang,, Y. Yamamoto,: Simple quantum computer. Phys. Rev. A 52(5), 3489(1995)
https://doi.org/10.1103/PhysRevA.52.3489
73 J. Wang,, F. Sciarrino,, A. Laing,, M.G. Thompson,: Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020)
https://doi.org/10.1038/s41566-019-0532-1
74 P. Piergentili,, F. Amanti,, G. Andrini,, F. Armani,, V. Bellani,, V. Bonaiuto,, S. Cammarata,, M. Campostrini,, S. Cornia,, T.H. Dao,, F. De Matteis,, V. Demontis,, G. Di Giuseppe,, S. Ditalia Tchernij,, S. Donati,, A. Fontana,, J. Forneris,, R. Francini,, L. Frontini,, R. Gunnella,, S. Iadanza,, A.E. Kaplan,, C. Lacava,, V. Liberali,, F. Marzioni,, E. Nieto Hernández,, E. Pedreschi,, D. Prete,, P. Prosposito,, V. Rigato,, C. Roncolato,, F. Rossella,, A. Salamon,, M. Salvato,, F. Sargeni,, J. Shojaii,, F. Spinella,, A. Stabile,, A. Toncelli,, G. Trucco,, V. Vitali,: Quantum information with integrated photonics. Appl. Sci. 14(1), 387(2024)
https://doi.org/10.3390/app14010387
75 A. Politi,, J.C.F. Matthews,, J.L. O’Brien,: Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221(2009)
https://doi.org/10.1126/science.1173731
76 B.J. Smith,, D. Kundys,, N. Thomas-Peter,, P.G.R. Smith,, I.A. Walmsley,: Phase-controlled integrated photonic quantum circuits. Opt. Express 17, 13516–13525 (2009)
https://doi.org/10.1364/OE.17.013516
77 A. Peruzzo,, M. Lobino,, J.C.F. Matthews,, N. Matsuda,, A. Politi,, K. Poulios,, X.Q. Zhou,, Y. Lahini,, N. Ismail,, K. Wörhoff,, Y. Bromberg,, Y. Silberberg,, M.G. Thompson,, J.L. OBrien,: Quantum walks of correlated photons. Science 329, 1500–1503 (2010)
https://doi.org/10.1126/science.1193515
78 A. Laing,, A. Peruzzo,, A. Politi,, M.R. Verde,, M. Halder,, T.C. Ralph,, M.G. Thompson,, J.L. O’Brien,: High-fidelity operation of quantum photonic circuits. Appl. Phys. Lett. 97, 211109(2010)
https://doi.org/10.1063/1.3497087
79 T. Gerrits,, N. Thomas-Peter,, J.C. Gates,, A.E. Lita,, B.J. Metcalf,, B. Calkins,, N.A. Tomlin,, A.E. Fox,, A.L. Linares,, J.B. Spring,, N.K. Langford,, R.P. Mirin,, P.G.R. Smith,, I.A. Walmsley,, S.W. Nam,: On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing. Phys. Rev. A 84, 060301(R) (2011)
https://doi.org/10.1103/PhysRevA.84.060301
80 W. Pernice,, C. Schuck,, O. Minaeva,, M. Li,, G.N. Goltsman,, A.V. Sergienko,, H.X. Tang,: High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325(2012)
https://doi.org/10.1038/ncomms2307
81 D. Bonneau,, E. Engin,, K. Ohira,, N. Suzuki,, H. Yoshida,, N. Iizuka,, M. Ezaki,, C.M. Natarajan,, M.G. Tanner,, R.H. Hadfield,, S.N. Dorenbos,, V. Zwiller,, J.L. O’Brien,, M.G. Thompson,: Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits. New J. Phys. 14, 045003(2012)
https://doi.org/10.1088/1367-2630/14/4/045003
82 A. Crespi,, R. Osellame,, R. Ramponi,, D.J. Brod,, E.F. Galvao,, N. Spagnolo,, C. Vitelli,, E. Maiorino,, P. Mataloni,, F. Sciarrino,: Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photon. 7(7), 545(2013)
https://doi.org/10.1038/nphoton.2013.112
83 M.A. Broome,, A. Fedrizzi,, S. Rahimikeshari,, J. Dove,, S. Aaronson,, T.C. Ralph,, A. White,: Photonic boson sampling in a tunable circuit. Science 339(6121), 794(2013)
https://doi.org/10.1126/science.1231440
84 J. Carolan,, J.D.A. Meinecke,, P.J. Shadbolt,, N.J. Russell,, N. Ismail,, K. Wörhoff,, T. Rudolph,, M.G. Thompson,, J.L. O’Brien,, J.C.F. Matthews,, A. Laing,: On the experimental verification of quantum complexity in linear optics. Nat. Photon. 8, 621–626 (2014)
https://doi.org/10.1038/nphoton.2014.152
85 L. Sansoni,, F. Sciarrino,, G. Vallone,, P. Mataloni,, A. Crespi,, R. Ramponi,, R. Osellame,: Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502(2012)
https://doi.org/10.1103/PhysRevLett.108.010502
86 Y.M. He,, Y. He,, Y.J. Wei,, D. Wu,, M. Atatüre,, C. Schneider,, S. Höfling,, M. Kamp,, C.Y. Lu,, J.W. Pan,: On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013)
https://doi.org/10.1038/nnano.2012.262
87 J. Silverstone,, D. Bonneau,, K. Ohira,, N. Suzuki,, H. Yoshida,, N. Iizuka,, M. Ezaki,, C.M. Natarajan,, M.G. Tanner,, R.H. Hadfield,, V. Zwiller,, G.D. Marshall,, J.G. Rarity,, J.L. O’Brien,, M.G. Thompson,: On-chip quantum interference between silicon photon-pair sources. Nat. Photon. 8, 104–108 (2014)
https://doi.org/10.1038/nphoton.2013.339
88 M. Arcari,, I. Söllner,, A. Javadi,, S. Lindskov Hansen,, S. Mahmoodian,, J. Liu,, H. Thyrrestrup,, E.H. Lee,, J.D. Song,, S. Stobbe,, P. Lodahl,: Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603(2014)
https://doi.org/10.1103/PhysRevLett.113.093603
89 A. Peruzzo,, J. McClean,, P. Shadbolt,, M.H. Yung,, X.Q. Zhou,, P.J. Love,, A. Aspuru-Guzik,, J.L. O’Brien,: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213(2014)
https://doi.org/10.1038/ncomms5213
90 J. Wang,, D. Bonneau,, M. Villa,, J.W. Silverstone,, R. Santagati,, S. Miki,, T. Yamashita,, M. Fujiwara,, M. Sasaki,, H. Terai,, M.G. Tanner,, C.M. Natarajan,, R.H. Hadfield,, J.L. O’Brien,, M.G. Thompson,: Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3, 407–413 (2016)
https://doi.org/10.1364/OPTICA.3.000407
91 P. Sibson,, C. Erven,, M. Godfrey,, S. Miki,, T. Yamashita,, M. Fujiwara,, M. Sasaki,, H. Terai,, M.G. Tanner,, C.M. Natarajan,, R.H. Hadfield,, J.L. O’Brien,, M.G. Thompson,: Chip-based quantum key distribution. Nat. Commun. 8, 13984(2017)
https://doi.org/10.1038/ncomms13984
92 J.B. Spring,, P.L. Mennea,, B.J. Metcalf,, P.C. Humphreys,, J.C. Gates,, H.L. Rogers,, C. Söller,, B.J. Smith,, W.S. Kolthammer,, P.G.R. Smith,, I.A. Walmsley,: Chip-based array of nearidentical, pure, heralded single-photon sources. Optica 4, 90–96 (2017)
https://doi.org/10.1364/OPTICA.4.000090
93 M. Bentivegna,, N. Spagnolo,, C. Vitelli,, F. Flamini,, N. Viggianiello,, L. Latmiral,, P. Mataloni,, D.J. Brod,, E.F. Galvao,, A. Crespi,, R. Ramponi,, R. Osellame,, F. Sciarrino,: Experimental scattershot boson sampling. Sci. Adv. 1(3), e1400255(2015)
https://doi.org/10.1126/sciadv.1400255
94 M. Ciampini,, A. Orieux,, S. Paesani,, F. Sciarrino,, G. Corrielli,, A. Crespi,, R. Ramponi,, R. Osellame,, P. Mataloni,: Path-polarization hyperentangled and cluster states of photons on a chip. Light Sci. Appl. 5, e16064(2016)
https://doi.org/10.1038/lsa.2016.64
95 H. Wang,, Y. He,, Y.H. Li,, Z.E. Su,, B. Li,, H.L. Huang,, X. Ding,, M.C. Chen,, C. Liu,, J. Qin,, J.P. Li,, Y.M. He,, C. Schneider,, M. Kamp,, C.Z. Peng,, S. Höfling,, C.Y. Lu,, J.W. Pan,: High-efficiency multiphoton boson sampling. Nat. Photon. 11(6), 361(2017)
https://doi.org/10.1038/nphoton.2017.63
96 J. Wang,, S. Paesani,, R. Santagati,, S. Knauer,, A.A. Gentile,, N. Wiebe,, M. Petruzzella,, J.L. O’Brien,, J.G. Rarity,, A. Laing,, M.G. Thompson,: Experimental quantum Hamiltonian learning. Nat. Phys. 13, 551–555 (2017)
https://doi.org/10.1038/nphys4074
97 J.W. Wang,, S. Paesani,, Y. Ding,, R. Santagati,, P. Skrzypczyk,, A. Salavrakos,, J. Tura,, R. Augusiak,, L. Mančinska,, D. Bacco,, D. Bonneau,, J.W. Silverstone,, Q. Gong,, A. Acín,, K. Rottwitt,, L.K. Oxenløwe,, J.L. O’Brien,, A. Laing,, M.G. Thompson,: Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018)
https://doi.org/10.1126/science.aar7053
98 J.C. Adcock,, C. Vigliar,, R. Santagati,, J.W. Silverstone,, M.G. Thompson,: Programmable four-photon graph states on a silicon chip. Nat. Commun. 10, 3528(2019)
https://doi.org/10.1038/s41467-019-11489-y
99 H. Wang,, J. Qin,, X. Ding,, M.C. Chen,, S. Chen,, X. You,, Y.M. He,, X. Jiang,, L. You,, Z. Wang,, C. Schneider,, J.J. Renema,, S. Höfling,, C.Y. Lu,, J.W. Pan,: Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503(2019)
100 J.M. Arrazola,, V. Bergholm,, K. Brádler,, T.R. Bromley,, M.J. Collins,, I. Dhand,, A. Fumagalli,, T. Gerrits,, A. Goussev,, L.G. Helt,, J. Hundal,, T. Isacsson,, R.B. Israel,, J. Izaac,, S. Jahangiri,, R. Janik,, N. Killoran,, S.P. Kumar,, J. Lavoie,, A.E. Lita,, D.H. Mahler,, M. Menotti,, B. Morrison,, S.W. Nam,, L. Neuhaus,, H.Y. Qi,, N. Quesada,, A. Repingon,, K.K. Sabapathy,, M. Schuld,, D. Su,, J. Swinarton,, A. Száva,, K. Tan,, P. Tan,, V.D. Vaidya,, Z. Vernon,, Z. Zabaneh,, Y. Zhang,: Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021)
https://doi.org/10.1038/s41586-021-03202-1
101 M. Zhang,, L. Feng,, M. Li,, Y. Chen,, L. Zhang,, D. He,, G. Guo,, G. Guo,, X. Ren,, D. Dai,: Supercompact photonic quantum logic gate on a silicon chip. Phys. Rev. Lett. 126, 130501(2021)
https://doi.org/10.1103/PhysRevLett.126.130501
102 S. Gyger,, J. Zichi,, L. Schweickert,, A.W. Elshaari,, S. Steinhauer,, S.F. Covre Da Silva,, A. Rastelli,, V. Zwiller,, K.D. Jöns,, C. Errando-Herranz,: Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun. 12, 1408(2021)
https://doi.org/10.1038/s41467-021-21624-3
103 Y.A. Chen,, Q. Zhang,, T.Y. Chen,, W.Q. Cai,, S.K. Liao,, J. Zhang,, K. Chen,, J. Yin,, J.G. Ren,, Z. Chen,, S.L. Han,, Q. Yu,, K. Liang,, F. Zhou,, X. Yuan,, M.S. Zhao,, T.Y. Wang,, X. Jiang,, L. Zhang,, W.Y. Liu,, Y. Li,, Q. Shen,, Y. Cao,, C.Y. Lu,, R. Shu,, J.Y. Wang,, L. Li,, N.L. Liu,, F. Xu,, X.B. Wang,, C.Z. Peng,, J.W. Pan,: An integrated space-to-ground quantum communication network over 4,600 kilometers. Nature 589, 214–219 (2021)
https://doi.org/10.1038/s41586-020-03093-8
104 Y. Chi,, J. Huang,, Z. Zhang,, J. Mao,, Z. Zhou,, X. Chen,, C. Zhai,, J. Bao,, T. Dai,, H. Yuan,, M. Zhang,, D. Dai,, B. Tang,, Y. Yang,, Z. Li,, Y. Ding,, L.K. Oxenløwe,, M.G. Thompson,, J.L. O’Brien,, Y. Li,, Q. Gong,, J. Wang,: A programmable Qudit-based quantum processor. Nat. Commun. 13, 1166(2022)
https://doi.org/10.1038/s41467-022-28767-x
105 Y. Zheng,, C. Zhai,, D. Liu,, J. Mao,, X. Chen,, T. Dai,, J. Huang,, J. Bao,, Z. Fu,, Y. Tong,, X. Zhou,, Y. Yang,, B. Tang,, Z. Li,, Y. Li,, Q. Gong,, H.K. Tsang,, D. Dai,, J. Wang,: Multichip multidimensional quantum networks with entanglement retrievability. Science 381, 221–226 (2023)
https://doi.org/10.1126/science.adg9210
106 T. Ono,, W. Roga,, K. Wakui,, M. Fujiwara,, S. Miki,, H. Terai,, M. Takeoka,: Demonstration of a Bosonic quantum classifier with data reuploading. Phys. Rev. Lett. 131, 013601(2023)
https://doi.org/10.1103/PhysRevLett.131.013601
107 J. Bao,, Z. Fu,, T. Pramanik,, J. Mao,, Y. Chi,, Y. Cao,, C. Zhai,, Y. Mao,, T. Dai,, X. Chen,, X. Jia,, L. Zhao,, Y. Zheng,, B. Tang,, Z. Li,, J. Luo,, W. Wang,, Y. Yang,, Y. Peng,, D. Liu,, D. Dai,, Q. He,, A.L. Muthali,, L.K. Oxenløwe,, C. Vigliar,, S. Paesani,, H. Hou,, R. Santagati,, J.W. Silverstone,, A. Laing,, M.G. Thompson,, J.L. O’Brien,, Y. Ding,, Q. Gong,, J. Wang,: Verylarge- scale integrated quantum graph photonics. Nat. Photon. 17, 573–581 (2023)
https://doi.org/10.1038/s41566-023-01187-z
108 Y.H. Deng,, Y.C. Gu,, H.L. Liu,, S.Q. Gong,, H. Su,, Z.J. Zhang,, H.Y. Tang,, M.H. Jia,, J.M. Xu,, M.C. Chen,, J. Qin,, L.C. Peng,, J. Yan,, Y. Hu,, J. Huang,, H. Li,, Y. Li,, Y. Chen,, X. Jiang,, L. Gan,, G. Yang,, L. You,, L. Li,, H.S. Zhong,, H. Wang,, N.L. Liu,, J.J. Renema,, C.Y. Lu,, J.W. Pan,: Gaussian boson sampling with pseudo-photon-number-resolving detectors and quantum computational advantage. Phys. Rev. Lett. 131(15), 131(2023)
https://doi.org/10.1103/PhysRevLett.131.150601
109 The Nobel Prize in Physics 2022. NobelPrize.org. Nobel Prize Outreach AB 2023. Available at the website of nobel prize.org/prizes/physics/2022/summary/ (2023)
110 J.F. Clauser,, A. Shimony,: Bell’s theorem: experimental tests and implications. Rep. Prog. Phys. 41, 1881–1927 (1978)
https://doi.org/10.1088/0034-4885/41/12/002
111 J.T. Barreiro,, N.K. Langford,, N.A. Peters,, P.G. Kwiat,: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501(2005)
https://doi.org/10.1103/PhysRevLett.95.260501
112 A. Fedrizzi,, T. Herbst,, A. Poppe,, T. Jennewein,, A. Zeilinger,: A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007)
https://doi.org/10.1364/OE.15.015377
113 O. Cohen,, J.S. Lundeen,, B.J. Smith,, G. Puentes,, P.J. Mosley,, I.A. Walmsley,: Tailored photon-pair generation in optical fibers. Phys. Rev. Lett. 102, 123603(2009)
https://doi.org/10.1103/PhysRevLett.102.123603
114 N. Langford,, S. Ramelow,, R. Prevedel,, W.J. Munro,, G.J. Milburn,, A. Zeilinger,: Efficient quantum computing using coherent photon conversion. Nature 478, 360–363 (2011)
https://doi.org/10.1038/nature10463
115 M. AbuGhanem,, H. Eleuch,: Two-qubit entangling gates for superconducting quantum computers. Results Phys. 56, 107236(2024)
https://doi.org/10.1016/j.rinp.2023.107236
116 M. AbuGhanem,: Comprehensive characterization of three-qubit Grover search algorithm on IBM’s 127-qubit superconducting quantum computers. arXiv: 2406.16018(2024)
117 M. AbuGhanem,, A. Homid,, M. Abdel-Aty,: Cavity control as a new quantum algorithms implementation treatment. Front. Phys. 13(1), 130303(2018)
https://doi.org/10.1007/s11467-017-0709-3
118 A. Politi,, M.J. Cryan,, J.G. Rarity,, S. Yu,, J.L. O’Brien,: Silicaon-silicon waveguide quantum circuits. Science 320, 646–649 (2008)
https://doi.org/10.1126/science.1155441
119 T.R. Bromley,, J.M. Arrazola,, S. Jahangiri,, J. Izaac,, N. Quesada,, A.D. Gran,, M. Schuld,, J. Swinarton,, Z. Zabaneh,, N. Killoran,: Applications of near-term photonic quantum computers: software and algorithms. Quantum Sci. Technol. 5, 034010(2020)
https://doi.org/10.1088/2058-9565/ab8504
120 M. Kues,, C. Reimer,, P. Roztocki,, L.R. Cortés,, S. Sciara,, B. Wetzel,, Y. Zhang,, A. Cino,, S.T. Chu,, B.E. Little,, D.J. Moss,, L. Caspani,, J. Azaña,, R. Morandotti,: On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622–626 (2017)
https://doi.org/10.1038/nature22986
121 T. Kobayashi,, R. Ikuta,, S. Yasui,, S. Miki,, T. Yamashita,, H. Terai,, T. Yamamoto,, M. Koashi,, N. Imoto,: Frequency-domain Hong-Ou-Mandel interference. Nat. Photon. 10, 441–444 (2016)
https://doi.org/10.1038/nphoton.2016.74
122 J.M. Lukens,, P. Lougovski,: Frequency-encoded photonic qubits for scalable quantum information processing. Optica 4, 8–16 (2017)
https://doi.org/10.1364/OPTICA.4.000008
123 H.H. Lu,, J.M. Lukens,, N.A. Peters,, O.D. Odele,, D.E. Leaird,, A.M. Weiner,, P. Lougovski,: Electro-optic frequency beam splitters and tritters for high-fidelity photonic quantum information processing. Phys. Rev. Lett. 120, 30502(2018)
https://doi.org/10.1103/PhysRevLett.120.030502
124 C. Joshi,, A. Farsi,, A. Dutt,, B.Y. Kim,, X. Ji,, Y. Zhao,, A.M. Bishop,, M. Lipson,, A.L. Gaeta,: Frequency-domain quantum interference with correlated photons from an integrated micro-resonator. Phys. Rev. Lett. 124, 143601(2020)
https://doi.org/10.1103/PhysRevLett.124.143601
125 M. Kues,, C. Reimer,, J.M. Lukens,, W.J. Munro,, A.M. Weiner,, D.J. Moss,, R. Morandotti,: Quantum optical microcombs. Nat. Photon. 13, 170–179 (2019)
https://doi.org/10.1038/s41566-019-0363-0
126 Y. Hu,, M. Yu,, D. Zhu,, N. Sinclair,, A. Shams-Ansari,, L. Shao,, J. Holzgrafe,, E. Puma,, M. Zhang,, M. Lončar,: On-chip electrooptic frequency shifters and beam splitters. Nature 599, 587–593 (2021)
https://doi.org/10.1038/s41586-021-03999-x
127 D.A.B. Miller,: Perfect optics with imperfect components. Optica 2, 747–750 (2015)
https://doi.org/10.1364/OPTICA.2.000747
128 C. Taballione,, R. van der Meer,, H.J. Snijders,, P. Hooijschuur,, J.P. Epping,, M. de Goede,, B. Kassenberg,, P. Venderbosch,, C. Toebes,, H. van den Vlekkert,, P.W.H. Pinkse,, J.J. Renema,: A universal fully reconfigurable 12-mode quantum photonic processor. Mater. Quantum Technol. 1, 035002(2021)
https://doi.org/10.1088/2633-4356/ac168c
129 N.J. Cerf,, C. Adami,, P.G. Kwiat,: Optical simulation of quantum logic. Phys. Rev. A 57(3), 1477(1998)
https://doi.org/10.1103/PhysRevA.57.R1477
130 G.J. Milburn,: Quantum optical fredkin gate. Phys. Rev. Lett. 62(18), 2124(1989)
https://doi.org/10.1103/PhysRevLett.62.2124
131 P. Kok,, H. Lee,, J.P. Dowling,: Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A 66(6), 063814(2002)
https://doi.org/10.1103/PhysRevA.66.063814
132 T.C. Ralph,, N.K. Langford,, T.B. Bell,, A.G. White,: Linear optical controlled-NOT gate in the coincidence basis. Phys. Rev. A 65, 062324(2001)
https://doi.org/10.1103/PhysRevA.65.062324
133 C. Weedbrook,, S. Pirandola,, R. García-Patrón,, N.J. Cerf,, T.C. Ralph,, J.H. Shapiro,, S. Lloyd,: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621(2012)
https://doi.org/10.1103/RevModPhys.84.621
134 S.L. Braunstein,, P. Van Loock,: Quantum information with continuous variables. Rev. Mod. Phys. 77(2), 513(2005)
https://doi.org/10.1103/RevModPhys.77.513
135 G. Adesso,, S. Ragy,, A.R. Lee,: Continuous variable quantum information: Gaussian states and beyond. Open. Syst. Inf. Dyn. 21(01n02), 1440001(2014)
https://doi.org/10.1142/S1230161214400010
136 A. Serafini,: Quantum continuous variables: a primer of theoretical methods. Routledge, New York (2017)
137 W.F. Balthazar,, D.P. Caetano,, C.E.R. Souza,, J.A.O. Huguenin,: Using polarization to control the phase of spatial modes for application in quantum information. Braz. J. Phys. 44(6), 658(2014)
https://doi.org/10.1007/s13538-014-0250-6
138 G. Milione,, T.A. Nguyen,, J. Leach,, D.A. Nolan,, R.R. Alfano,: Using the nonseparability of vector beams to encode information for optical communication. Opt. Lett. 40(21), 4887(2015)
https://doi.org/10.1364/OL.40.004887
139 C.E.R. Souza,, C.V.S. Borges,, A.Z. Khoury,, J.A.O. Huguenin,, L. Aolita,, S.P. Walborn,: Quantum key distribution without a shared reference frame. Phys. Rev. A 77, 032345(2008)
https://doi.org/10.1103/PhysRevA.77.032345
140 P.C. Obando,, M.H.M. Passos,, F.M. Paula,, J.A.O. Huguenin,: Simulating Markovian quantum decoherence processes through an all-optical setup. Quant. Inf. Process. 19(7), 1573(2020)
https://doi.org/10.1007/s11128-019-2499-8
141 A.Z. Khoury,, P. Milman,: Quantum teleportation in the spinorbit variables of photon pairs. Phys. Rev. A 83, 060301(2011)
https://doi.org/10.1103/PhysRevA.83.060301
142 M.H.M. Passos,, P.C. Obando,, W.F. Balthazar,, F.M. Paula,, J.A.O. Huguenin,, M.S. Sarandy,: Non-Markovianity through quantum coherence in an all-optical setup. Opt. Lett. 44(10), 2478(2019)
https://doi.org/10.1364/OL.44.002478
143 M.H.M. Passos,, A.C. Santos,, M.S. Sarandy,, J.A.O. Huguenin,: Optical simulation of a quantum thermal machine. Phys. Rev. A 100, 022113(2019)
https://doi.org/10.1103/PhysRevA.100.022113
144 M.H.M. Passos,, W.F. Balthazar,, A.Z. Khoury,, M. Hor-Meyll,, L. Davidovich,, J.A.O. Huguenin,: Experimental investigation of environment-induced entanglement using an all-optical setup. Phys. Rev. A 97, 022321(2018)
https://doi.org/10.1103/PhysRevA.97.022321
145 S. Pallister,, N. Linden,, A. Montanaro,: Optimal verification of entangled states with local measurements. Phys. Rev. Lett. 120, 170502(2018)
https://doi.org/10.1103/PhysRevLett.120.170502
146 H. Zhu,, M. Hayashi,: Efficient verification of pure quantum states in the adversarial scenario. Phys. Rev. Lett. 123, 260504(2019)
https://doi.org/10.1103/PhysRevLett.123.260504
147 Z. Li,, Y.H. Han,, H. Zhu,: Efficient verification of bipartite pure states. Phys. Rev. A 100, 032316(2019)
https://doi.org/10.1103/PhysRevA.100.032316
148 K. Wang,, M. Hayashi,: Optimal verification of two-qubit pure states. Phys. Rev. A 100, 032315(2019)
https://doi.org/10.1103/PhysRevA.100.032315
149 T. Sugiyama,, P.S. Turner,, M. Murao,: Precision-guaranteed quantum tomography. Phys. Rev. Lett. 111, 160406(2013)
https://doi.org/10.1103/PhysRevLett.111.160406
150 J.P. Gonzales,, P. Sánchez,, F. Auccapuclla,, B. Miller,, M.V. Andrés,, F. De Zela,: Unrestricted generation of pure two-qubit states and entanglement diagnosis by single-qubit tomography. Opt. Lett. 44(13), 3310–3313 (2019)
https://doi.org/10.1364/OL.44.003310
151 R. Starek,, M. Miková,, I. Straka,, M. Dušek,, M. Ježek,, J. Fiurášek,, M. Mičuda,: Experimental realization of SWAP operation on hyper-encoded qubits. Opt. Express 26(7), 8443–8452(2018)
https://doi.org/10.1364/OE.26.008443
152 D.R.A. Ruelas,, C.M. Paredes,, J.P. Marrou,, Y. Yugra,, M. Uria,, E. Massoni,, F. De Zela,: Synthesis and characterization of pure, two-qubit states encoded in path and polarization. J. Opt. 23, 085201(2021)
https://doi.org/10.1088/2040-8986/ac1bbf
153 L.C. Kwek,, L. Cao,, W. Luo,, Y. Wang,, S. Sun,, X. Wang,, A.Q. Liu,: Chip-based quantum key distribution. AAPPS Bull. 31(1), 1–8 (2021)
https://doi.org/10.1007/s43673-021-00017-0
154 V. Scarani,, H. Bechmann-Pasquinucci,, N.J. Cerf,, M. Dušek,, N. Lütkenhaus,, M. Peev,: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301(2009)
https://doi.org/10.1103/RevModPhys.81.1301
155 F. Xu,, X. Ma,, Q. Zhang,, H.K. Lo,, J.W. Pan,: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002(2020)
https://doi.org/10.1103/RevModPhys.92.025002
156 C. Myers,, R. Laflamme,: Linear optics quantum computation: an overview. arXiv preprint quant-ph/0512104(2005)
157 J.E. Bourassa,, R.N. Alexander,, M. Vasmer,, A. Patil,, I. Tzitrin,, T. Matsuura,, D. Su,, B.Q. Baragiola,, S. Guha,, G. Dauphinais,, K.K. Sabapathy,, N.C. Menicucci,, I. Dhand,: Blueprint for a scalable photonic fault-tolerant quantum computer. Quantum 5, 392(2021)
https://doi.org/10.22331/q-2021-02-04-392
158 S. Barzanjeh,, A. Xuereb,, S. Gröblacher,, M. Paternostro,, C.A. Regal,, E.M. Weig,: Optomechanics for quantum technologies. Nat. Phys. 18, 15–24 (2022)
https://doi.org/10.1038/s41567-021-01402-0
159 M. Aspelmeyer,, T.J. Kippenberg,, F. Marquardt,: Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391(2014)
https://doi.org/10.1103/RevModPhys.86.1391
160 S. Wang,, Z.Q. Yin,, D.Y. He,, W. Chen,, R.Q. Wang,, P. Ye,, Y. Zhou,, G.J. Fan-Yuan,, F.X. Wang,, W. Chen,, Y.G. Zhu,, P.V. Morozov,, A.V. Divochiy,, Z. Zhou,, G.C. Guo,, Z.F. Han,: Twin-field quantum key distribution over 830-km fibre. Nat. Photon. 16, 154–161 (2022)
https://doi.org/10.1038/s41566-021-00928-2
161 W. Li,, L. Zhang,, H. Tan,, Y. Lu,, S.K. Liao,, J. Huang,, H. Li,, Z. Wang,, H.K. Mao,, B. Yan,, Q. Li,, Y. Liu,, Q. Zhang,, C.Z. Peng,, L. You,, F. Xu,, J.W. Pan,: High-rate quantum key distribution exceeding 110 Mb s−1. Nat. Photon. 17, 416–421 (2023)
https://doi.org/10.1038/s41566-023-01166-4
162 M. Clementi,, F.A. Sabattoli,, M. Borghi,, L. Gianini,, N. Tagliavacche,, H. El Dirani,, L. Youssef,, N. Bergamasco,, C. Petit- Etienne,, E. Pargon,, J.E. Sipe,, M. Liscidini,, C. Sciancalepore,, M. Galli,, D. Bajoni,: Programmable frequency-bin quantum states in a nano-engineered silicon device. Nat. Commun. 14, 176(2023)
https://doi.org/10.1038/s41467-022-35773-6
163 J. Brendel,, N. Gisin,, W. Tittel,, H. Zbinden,: Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82, 2594(1999)
https://doi.org/10.1103/PhysRevLett.82.2594
164 I. Marcikic,, H. de Riedmatten,, W. Tittel,, V. Scarani,, H. Zbinden,, N. Gisin,: Time-bin entangled qubits for quantum communication created by femtosecond pulses. Phys. Rev. A 66, 062308(2002)
https://doi.org/10.1103/PhysRevA.66.062308
165 I. Marcikic,, H. de Riedmatten,, W. Tittel,, H. Zbinden,, M. Legré,, N. Gisin,: Distribution of time-bin entangled qubits over 50 km of optical fiber. Phys. Rev. Lett. 93, 180502(2004)
https://doi.org/10.1103/PhysRevLett.93.180502
166 T. Inagaki,, N. Matsuda,, O. Tadanaga,, M. Asobe,, H. Takesue,: Entanglement distribution over 300 km of fiber. Opt. Express 21, 23241–23249 (2013)
https://doi.org/10.1364/OE.21.023241
167 J.W. Silverstone,, R. Santagati,, D. Bonneau,, M.J. Strain,, M. Sorel,, J.L. O’Brien,, M.G. Thompson,: Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat. Commun. 6, 7948(2015)
https://doi.org/10.1038/ncomms8948
168 P.G. Kwiat,, E. Waks,, A.G. White,, I. Appelbaum,, P.H. Eberhard,: Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773–R776(1999)
https://doi.org/10.1103/PhysRevA.60.R773
169 L. Sansoni,, F. Sciarrino,, G. Vallone,, P. Mataloni,, A. Crespi,, R. Ramponi,, R. Osellame,: Polarization entangled state measurement on a chip. Phys. Rev. Lett. 105, 200503(2010)
https://doi.org/10.1103/PhysRevLett.105.200503
170 R. Ursin,, F. Tiefenbacher,, T. Schmitt-Manderbach,, H. Weier,, T. Scheidl,, M. Lindenthal,, B. Blauensteiner,, T. Jennewein,, J. Perdigues,, P. Trojek,, B. Ömer,, M. Fürst,, M. Meyenburg,, J. Rarity,, Z. Sodnik,, C. Barbieri,, H. Weinfurter,, A. Zeilinger,: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)
https://doi.org/10.1038/nphys629
171 J. Zeuner,, A.N. Sharma,, M. Tillmann,, R. Heilmann,, M. Gräfe,, A. Moqanaki,, A. Szameit,, P. Walther,: Integrated-optics heralded controlled-NOT gate for polarization-encoded qubits. npj Quantum Inf. (2018)
172 A. Crespi,, R. Ramponi,, R. Osellame,, L. Sansoni,, I. Bongioanni,, F. Sciarrino,, G. Vallone,, P. Mataloni,: Integrated photonic quantum gates for polarization qubits. Nat. Commun. 2, 566(2011)
https://doi.org/10.1038/ncomms1570
173 G.D. Marshall,, A. Politi,, J.C.F. Matthews,, P. Dekker,, M. Ams,, M.J. Withford,, J.L. O’Brien,: Laser written waveguide photonic quantum circuits. Opt. Express 17, 12546–12554 (2009)
https://doi.org/10.1364/OE.17.012546
174 K.M. Davis,, K. Miura,, N. Sugimoto,, K. Hirao,: Writing wave-guides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731(1996)
https://doi.org/10.1364/OL.21.001729
175 A.H. Zewail,: Femtochemistry. Laser Sci. 242, 4886(1988)
https://doi.org/10.1126/science.242.4886.1645
176 A.H. Zewail,: Femtochemistry: recent progress in studies of dynamics and control of reactions and their transition states. J. Phys. Chem. 100, 31(1996)
https://doi.org/10.1021/jp960658s
177 A.H. Zewail,: Femtochemistry: atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel Lecture). Angewandte Chemie International Edition, 2000—Wiley Online Library (2000)
178 P. Kok,, B.W. Lovett,: Introduction to Optical Quantum Information Processing. Cambridge University Press (2010)
179 Z. Hou,, G. Xiang,, D. Dong,, C.F. Li,, G.C. Guo,: Realization of mutually unbiased bases for a qubit with only one wave plate: theory and experiment. Opt. Express 23, 10018–10031 (2015)
https://doi.org/10.1364/OE.23.010018
180 R. Prevedel,, P. Walther,, F. Tiefenbacher,, P. Böhi,, R. Kaltenbaek,, T. Jennewein,, A. Zeilinger,: High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007)
https://doi.org/10.1038/nature05346
181 R. Heilmann,, M. Gräfe,, S. Nolte,, A. Szameit,: Arbitrary photonic wave plate operations on chip: realizing Hadamard, Pauli- X and rotation gates for polarisation qubits. Sci. Rep. 4, 4118(2014)
https://doi.org/10.1038/srep04118
182 S. Barz,, I. Kassal,, M. Ringbauer,, Y.O. Lipp,, B. Dakić,, A. Aspuru-Guzik,, P. Walther,: A two-qubit photonic quantum processor and its application to solving systems of linear equations. Sci. Rep. 4, 6115(2014)
https://doi.org/10.1038/srep06115
183 J. Matthews,, K. Poulios,, J. Meinecke,, A. Politi,, A. Peruzzo,, N. Ismail,, K. Wörhoff,, M.G. Thompson,, J.L. O’Brien,: Observing fermionic statistics with photons in arbitrary processes. Sci. Rep. 3, 1539(2013)
https://doi.org/10.1038/srep01539
184 C. Ma,, W.D. Sacher,, Z. Tang,, J.C. Mikkelsen,, Y. Yang,, X. Feihu,, T. Thiessen,, H.K. Lo,, J.K.S. Poon,: Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica 3, 1274–1278 (2016)
https://doi.org/10.1364/OPTICA.3.001274
185 Y.-H. Kim,, S.P. Kulik,, Y. Shih,: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86, 1370(2001)
https://doi.org/10.1103/PhysRevLett.86.1370
186 A. Vallés,, M. Hendrych,, J. Svozilík,, R. Machulka,, P. Abolghasem,, D. Kang,, B.J. Bijlani,, A.S. Helmy,, J.P. Torres,: Generation of polarization-entangled photon pairs in a Bragg reflection waveguide. Opt. Express 21, 10841–10849 (2013)
https://doi.org/10.1364/OE.21.010841
187 L. Olislager,, J. Safioui,, S. Clemmen,, K.P. Huy,, W. Bogaerts,, R. Baets,, P. Emplit,, S. Massar,: Silicon-on-insulator integrated source of polarization-entangled photons. Opt. Lett. 38, 1960–1962(2013)
https://doi.org/10.1364/OL.38.001960
188 N. Matsuda,, H. Le Jeannic,, H. Fukuda,, T. Tsuchizawa,, W.J. Munro,, K. Shimizu,, K. Yamada,, Y. Tokura,, H. Takesue,: A monolithically integrated polarization entangled photon pair source on a silicon chip. Sci. Rep. 2, 817(2012)
https://doi.org/10.1038/srep00817
189 F. Kaiser,, L.A. Ngah,, A. Issautier,, T. Delord,, D. Aktas,, V. D’Auria,, M.P. De Micheli,, A. Kastberg,, L. Labonté,, O. Alibart,, A. Martin,, S. Tanzilli,: Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry. Opt. Commun. 327, 7–16 (2014)
https://doi.org/10.1016/j.optcom.2014.03.056
190 D. Hamel,, L. Shalm,, H. Hübel,, A.J. Miller,, F. Marsili,, V.B. Verma,, R.P. Mirin,, S.W. Nam,, K.J. Resch,, T. Jennewein,: Direct generation of three-photon polarization entanglement. Nat. Photon. 8, 801–807 (2014)
https://doi.org/10.1038/nphoton.2014.218
191 J.T. Barreiro,, T.-C. Wei,, P.G. Kwiat,: Remote preparation of single-photon “hybrid” entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407(2010)
https://doi.org/10.1103/PhysRevLett.105.030407
192 A. Crespi,, S. Longhi,, R. Osellame,: Photonic realization of the quantum rabi model. Phys. Rev. Lett. 108, 163601(2012)
https://doi.org/10.1103/PhysRevLett.108.163601
193 S. Rojas-Rojas,, L. Morales-Inostroza,, U. Naether,, G.B. Xavier,, S. Nolte,, A. Szameit,, R.A. Vicencio,, G. Lima,, A. Delgado,: Analytical model for polarization-dependent light propagation in waveguide arrays and applications. Phys. Rev. A 90, 063823(2014)
https://doi.org/10.1103/PhysRevA.90.063823
194 D. Bonneau,, M. Lobino,, P. Jiang,, C.M. Natarajan,, M.G. Tanner,, R.H. Hadfield,, S.N. Dorenbos,, V. Zwiller,, M.G. Thompson,, J.L. O’Brien,: Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices. Phys. Rev. Lett. 108, 053601(2012)
https://doi.org/10.1103/PhysRevLett.108.053601
195 M. Müller,, S. Bounouar,, K. Jöns,, M. Glässl,, P. Michler,: Ondemand generation of indistinguishable polarization-entangled photon pairs. Nat. Photon. 8, 224–228 (2014)
https://doi.org/10.1038/nphoton.2013.377
196 D. Bhatti,, J. von Zanthier,, G.S. Agarwal,: Entanglement of polarization and orbital angular momentum. Phys. Rev. A 91, 062303(2015)
https://doi.org/10.1103/PhysRevA.91.062303
197 G. Vallone,, R. Ceccarelli,, F. De Martini,, P. Mataloni,: Hyper-entanglement of two photons in three degrees of freedom. Phys. Rev. A 79, 030301(R) (2009)
https://doi.org/10.1103/PhysRevA.79.030301
198 A. Orieux,, M.A. Ciampini,, P. Mataloni,, D. Bruß,, M. Rossi,, C. Macchiavello,: Experimental generation of robust entanglement from classical correlations via local dissipation. Phys. Rev. Lett. 115, 160503(2015)
https://doi.org/10.1103/PhysRevLett.115.160503
199 R. Fickler,, R. Lapkiewicz,, W.N. Plick,, M. Krenn,, C. Schaeff,, S. Ramelow,, A. Zeilinger,: Quantum entanglement of high angular momenta. Science 338, 640–643 (2012)
https://doi.org/10.1126/science.1227193
200 E. Nagali,, F. Sciarrino,, F. De Martini,, L. Marrucci,, B. Piccirillo,, E. Karimi,, E. Santamato,: Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103, 013601(2009)
https://doi.org/10.1103/PhysRevLett.103.013601
201 T.Y. Chen,, J. Zhang,, J.C. Boileau,, X.M. Jin,, B. Yang,, Q. Zhang,, F.T. Yang,, R. Laflamme,, J.W. Pan,: Experimental quantum communication without a shared reference frame. Phys. Rev. Lett. 96, 150504(2006)
https://doi.org/10.1103/PhysRevLett.96.150504
202 F. Steinlechner,, S. Ecker,, M. Fink,, B. Liu,, J. Bavaresco,, M. Huber,, T. Scheidl,, R. Ursin,: Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 8, 15971(2017)
https://doi.org/10.1038/ncomms15971
203 P.G. Kwiat,: Hyper-entangled states. J. Mod. Opt. 44(11–12), 2173–2184 (1997)
https://doi.org/10.1080/09500349708231877
204 R.C. Souza,, W.F. Balthazar,, J.A.O. Huguenin,: Universal quantum gates for path photonic qubit. Quantum Inf. Process. 21, 68(2022)
https://doi.org/10.1007/s11128-022-03415-x
205 A.S. Solntsev,, A.A. Sukhorukov,: Path-entangled photon sources on nonlinear chips. Rev. Phys. 2, 19–31 (2017)
https://doi.org/10.1016/j.revip.2016.11.003
206 W.F. Balthazar,, C.E.R. Souza,, D.P. Caetano,, E.F. Galvão,, J.A.O. Huguenin,, A.Z. Khoury,: Tripartite nonseparability in classical optics. Opt. Lett. 41, 5797–5800 (2016)
https://doi.org/10.1364/OL.41.005797
207 M. Li,, C. Li,, Y. Chen,, L.T. Feng,, L. Yan,, Q. Zhang,, J. Bao,, B.H. Liu,, X.F. Ren,, J. Wang,, S. Wang,: On-chip path encoded photonic quantum Toffoli gate. Photon. Res. 10, 1533–1542 (2022)
https://doi.org/10.1364/PRJ.452539
208 A. Babazadeh,, M. Erhard,, F. Wang,, M. Malik,, R. Nouroozi,, M. Krenn,, A. Zeilinger,: High-dimensional single-photon quantum gates: concepts and experiments. Phys. Rev. Lett. 119(18), 180510(2017)
https://doi.org/10.1103/PhysRevLett.119.180510
209 A. De Oliveira,, S. Walborn,, C. Monken,: Implementing the Deutsch algorithm with polarization and transverse spatial modes. J. Opt. B Quant. Semiclass. Opt. 7(9), 288(2005)
https://doi.org/10.1088/1464-4266/7/9/009
210 B. Da Lio,, D. Cozzolino,, N. Biagi,, Y. Ding,, K. Rottwitt,, A. Zavatta,, D. Bacco,, L. Oxenløwe,: Path-encoded high-dimensional quantum communication over a 2-km multicore fiber. npj Quantum Inf. 7, 63(2021)
https://doi.org/10.1038/s41534-021-00398-y
211 V. D’ambrosio,, E. Nagali,, S.P. Walborn,, L. Aolita,, S. Slussarenko,, L. Marrucci,, F. Sciarrino,: Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 3(1), 1(2012)
https://doi.org/10.1038/ncomms1951
212 J. Matthews,, A. Politi,, A. Stefanov,, J.L. O’Brien,: Manipulation of multiphoton entanglement in waveguide quantum circuits. Nat. Photon. 3, 346–350 (2009)
https://doi.org/10.1038/nphoton.2009.93
213 H. Jin,, F.M. Liu,, P. Xu,, J.L. Xia,, M.L. Zhong,, Y. Yuan,, J.W. Zhou,, Y.X. Gong,, W. Wang,, S.N. Zhu,: On-chip generation and manipulation of entangled photons based on reconfigurable lithium- niobate waveguide circuits. Phys. Rev. Lett. 113, 103601(2014)
https://doi.org/10.1103/PhysRevLett.113.103601
214 N.C. Harris,, D. Grassani,, A. Simbula,, M. Pant,, M. Galli,, T. Baehr-Jones,, M. Hochberg,, D. Englund,, D. Bajoni,, C. Galland,: Integrated source of spectrally filtered correlated photons for large-scale quantum photonic systems. Phys. Rev. X 4, 041047(2014)
https://doi.org/10.1103/PhysRevX.4.041047
215 J.G. Titchener,, A.S. Solntsev,, A.A. Sukhorukov,: Generation of photons with all-optically-reconfigurable entanglement in integrated nonlinear waveguides. Phys. Rev. A 92, 033819(2015)
https://doi.org/10.1103/PhysRevA.92.033819
216 A.S. Solntsev,, F. Setzpfandt,, A.S. Clark,, C.W. Wu,, M.J. Collins,, C. Xiong,, A. Schreiber,, F. Katzschmann,, F. Eilenberger,, R. Schiek,, W. Sohler,: Generation of nonclassical biphoton states through cascaded quantum walks on a nonlinear chip. Phys. Rev. X 4, 031007(2014)
https://doi.org/10.1103/PhysRevX.4.031007
217 C. Schaeff,, R. Polster,, R. Lapkiewicz,, R. Fickler,, S. Ramelow,, A. Zeilinger,: Scalable fiber integrated source for higher-dimensional path-entangled photonic quNits. Opt. Express 20, 16145–16153 (2012)
https://doi.org/10.1364/OE.20.016145
218 D.A. Antonosyan,, A.S. Solntsev,, A.A. Sukhorukov,: Effect of loss on photon-pair generation in nonlinear waveguide arrays. Phys. Rev. A 90, 043845(2014)
https://doi.org/10.1103/PhysRevA.90.043845
219 J.D. Franson,: Bell inequality for position and time. Phys. Rev. Lett. 62, 2205(1989)
https://doi.org/10.1103/PhysRevLett.62.2205
220 P.C. Humphreys,, B.J. Metcalf,, J.B. Spring,, M. Moore,, X.M. Jin,, M. Barbieri,, W.S. Kolthammer,, I.A. Walmsley,: Linear optical quantum computing in a single spatial mode. Phys. Rev. Lett. 111, 150501(2013)
https://doi.org/10.1103/PhysRevLett.111.150501
221 J.M. Donohue,, M. Agnew,, J. Lavoie,, K.J. Resch,: Coherent ultrafast measurement of time-bin encoded photons. Phys. Rev. Lett. 111, 153602(2013)
https://doi.org/10.1103/PhysRevLett.111.153602
222 A. Ortu,, A. Holzäpfel,, J. Etesse,, M. Afzelius,: Storage of photonic time-bin qubits for up to 20 ms in a rare-earth doped crystal. npj Quantum Inf. 8, 29(2022)
https://doi.org/10.1038/s41534-022-00541-3
223 Y. Kochi,, S. Kurimura,, J. Ishi-Hayase,: Evaluation of femtosecond time-bin qubits using frequency up-conversion technique. arXive preprint arXiv: 2205.06957 [quant-ph] (2022)
224 F. Bouchard,, D. England,, P.J. Bustard,, K. Heshami,, B. Sussman,: Quantum communication with ultrafast time-bin qubits. arXive preprint arXiv: 2106. 09833 [quant-ph] (2021)
225 L. Yu,, C. Natarajan,, T. Horikiri,, C. Langrock,, J.S. Pelc,, M.G. Tanner,, E. Abe,, S. Maier,, C. Schneider,, S. Höfling,, M. Kamp,, R.H. Hadfield,, M.M. Fejer,, Y. Yamamoto,: Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits. Nat. Commun. 6, 8955(2015)
https://doi.org/10.1038/ncomms9955
226 G.Z. Tang,, S.H. Sun,, H. Chen,, C.Y. Li,, L.M. Liang,: Time-bin phase-encoding measurement-device-independent quantum key distribution with four single-photon detectors. Chin. Phys. Lett. 33, 120301(2016)
https://doi.org/10.1088/0256-307X/33/12/120301
227 M. Gündoğan,, P.M. Ledingham,, K. Kutluer,, M. Mazzera,, H. de Riedmatten,: Solid state spin-wave quantum memory for time-bin qubits. Phys. Rev. Lett. 114, 230501(2015)
https://doi.org/10.1103/PhysRevLett.114.230501
228 I. Marcikic,, H. de Riedmatten,, W. Tittel,, H. Zbinden,, N. Gisin,: Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003)
https://doi.org/10.1038/nature01376
229 H. de Riedmatten,, I. Marcikic,, W. Tittel,, H. Zbinden,, D. Collins,, N. Gisin,: Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 047904(2004)
https://doi.org/10.1103/PhysRevLett.92.047904
230 O. Landry,, J.A. van Houwelingen,, A. Beveratos,, H. Zbinden,, N. Gisin,: Quantum teleportation over the Swisscom telecommunication network. J. Opt. Soc. Am. B 24, 398–403 (2007)
https://doi.org/10.1364/JOSAB.24.000398
231 X. Guo,, Y. Mei,, D. Shengwang,: Testing the Bell inequality on frequency-bin entangled photon pairs using time-resolved detection. Optica 4, 388–392 (2017)
https://doi.org/10.1364/OPTICA.4.000388
232 P.B.R. Nisbet-Jones,: Photonic qubits, qutrits and ququads accurately prepared and delivered on demand. New J. Phys. 15, 053007(2013)
https://doi.org/10.1088/1367-2630/15/5/053007
233 A. Martin,, F. Kaiser,, A. Vernier,, A. Beveratos,, V. Scarani,, S. Tanzilli,: Cross time-bin photonic entanglement for quantum key distribution. Phys. Rev. A 87, 020301(R) (2013)
https://doi.org/10.1103/PhysRevA.87.020301
234 K.I. Harada,, H. Takesue,, H. Fukuda,, T. Tsuchizawa,, T. Watanabe,, K. Yamada,, Y. Tokura,, S.I. Itabashi,: Generation of high-purity entangled photon pairs using silicon wire wave-guide. Opt. Express 16, 20368–20373 (2008)
https://doi.org/10.1364/OE.16.020368
235 R. Wakabayashi,, M. Fujiwara,, K.I. Yoshino,, Y. Nambu,, M. Sasaki,, T. Aoki,: Time-bin entangled photon pair generation from Si micro-ring resonator. Opt. Express 23, 1103–1113 (2015)
https://doi.org/10.1364/OE.23.001103
236 C. Xiong,, X. Zhang,, A. Mahendra,, J. He,, D.-Y. Choi,, C.J. Chae,, D. Marpaung,, A. Leinse,, R.G. Heideman,, M. Hoekman,, C.G.H. Roeloffzen,, R.M. Oldenbeuving,, P.W.L. van Dijk,, C. Taddei,, P.H.W. Leong,, B.J. Eggleton,: Compact and reconfigurable silicon nitride time-bin entanglement circuit. Optica 2, 724–727 (2015)
https://doi.org/10.1364/OPTICA.2.000724
237 Y. He,, X. Ding,, Z.E. Su,, H.L. Huang,, J. Qin,, C. Wang,, S. Unsleber,, C. Chen,, H. Wang,, Y.M. He,, X.L. Wang,: Time-bin-encoded boson sampling with a single-photon device. Phys. Rev. Lett. 118, 190501(2017)
https://doi.org/10.1103/PhysRevLett.118.190501
238 K.R. Motes,, A. Gilchrist,, J.P. Dowling,, P.P. Rohde,: Scalable boson sampling with time-bin encoding using a loop-based architecture. Phys. Rev. Lett. 113, 120501(2014)
https://doi.org/10.1103/PhysRevLett.113.120501
239 A. Schreiber,, K.N. Cassemiro,, V. Potoček,, A. Gábris,, P.J. Mosley,, E. Andersson,, I. Jex,, C. Silberhorn,: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104, 050502(2010)
https://doi.org/10.1103/PhysRevLett.104.050502
240 A. Regensburger,, C. Bersch,, B. Hinrichs,, G. Onishchukov,, A. Schreiber,, C. Silberhorn,, U. Peschel,: Photon propagation in a discrete fiber network: an interplay of coherence and losses. Phys. Rev. Lett. 107, 233902(2011)
https://doi.org/10.1103/PhysRevLett.107.233902
241 A. Schreiber,: A 2D quantum walk simulation of two-particle dynamics. Science 336, 55–58 (2012)
https://doi.org/10.1126/science.1218448
242 Y.C. Jeong,, C. Di Franco,, H.T. Lim,, M.S. Kim,, Y.H. Kim,: Experimental realization of a delayed-choice quantum walk. Nat. Commun. 4, 2471(2013)
https://doi.org/10.1038/ncomms3471
243 J. Boutari,, A. Feizpour,, S. Barz,, C.D. Franco,, M.S. Kim,, W.S. Kolthammer,, I.A. Walmsley,: Large scale quantum walks by means of optical fiber cavities. J. Opt. 18, 094007(2016)
https://doi.org/10.1088/2040-8978/18/9/094007
244 L. Olislager,, J. Cussey,, A.T. Nguyen,, P. Emplit,, S. Massar,, J.M. Merolla,, K.P. Huy,: Frequency-bin entangled photons. Phys. Rev. A 82, 013804(2010)
https://doi.org/10.1103/PhysRevA.82.013804
245 F. Kaneda,, H. Suzuki,, R. Shimizu,, K. Edamatsu,: Direct generation of frequency-bin entangled photons via two-period quasi-phase-matched parametric downconversion. Opt. Express 27, 1416(2019)
https://doi.org/10.1364/OE.27.001416
246 D. Rieländer,, A. Lenhard,, O. Jime’nez Farìas,, A. Máttar,, D. Cavalcanti,, M. Mazzera,, A. Acín,, H. Riedmatten,: Frequency- bin entanglement of ultra-narrow band non-degenerate photon pairs. Quantum Sci. Technol. 3, 014007(2017)
https://doi.org/10.1088/2058-9565/aa97b6
247 H.H. Lu,, J.M. Lukens,, N.A. Peters,, B.P. Williams,, A.M. Weiner,, P. Lougovski,: Quantum interference and correlation control of frequency-bin qubits. Optica 5, 1455–1460 (2018)
https://doi.org/10.1364/OPTICA.5.001455
248 P. Imany,, J.A. Jaramillo-Villegas,, O.D. Odele,, K. Han,, D.E. Leaird,, J.M. Lukens,, P. Lougovski,, M. Qi,, A.M. Weiner,: 50-GHz-spaced comb of high-dimensional frequencybin entangled photons from an on-chip silicon nitride micro-resonator. Opt. Express 26, 1825(2018)
https://doi.org/10.1364/OE.26.001825
249 C. Reimer,, M. Kues,, P. Roztocki,, B. Wetzel,, F. Grazioso,, B.E. Little,, S.T. Chu,, T. Johnston,, Y. Bromberg,, L. Caspani,, D.J. Moss,, R. Morandotti,: Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016)
https://doi.org/10.1126/science.aad8532
250 T. Zhong,, H. Zhou,, R.D. Horansky,, C. Lee,, V.B. Verma,, A.E. Lita,, A. Restelli,, J.C. Bienfang,, R.P. Mirin,, T. Gerrits,, S.W. Nam,, F. Marsili,, M.D. Shaw,, Z. Zhang,, L. Wang,, D. Englund,, G.W. Wornell,, J.H. Shapiro,, F.N.C. Wong,: Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding. New. J. Phys. 17, 022002(2015)
https://doi.org/10.1088/1367-2630/17/2/022002
251 J. Nunn,, L.J. Wright,, C. Söller,, L. Zhang,, I.A. Walmsley,, B.J. Smith,: Large-alphabet time-frequency entangled quantum key distribution by means of time-to-frequency conversion. Opt. Express 21, 15959–15973 (2013)
https://doi.org/10.1364/OE.21.015959
252 A. Hayat,, X. Xing,, A. Feizpour,, A.M. Steinberg,: Multidimensional quantum information based on single-photon temporal wavepackets. Opt. Express 20, 29174–29184 (2012)
https://doi.org/10.1364/OE.20.029174
253 J. Roslund,, R.M. De Araujo,, S. Jiang,, C. Fabre,, N. Treps,: Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photon. 8, 109(2014)
https://doi.org/10.1038/nphoton.2013.340
254 F. Kaiser,, D. Aktas,, B. Fedrici,, T. Lunghi,, L. Labonté,, S. Tanzilli,: Optimal analysis of ultra broadband energy-time entanglement for high bit-rate dense wavelength division multiplexed quantum networks. Appl. Phys. Lett. 108, 231108(2016)
https://doi.org/10.1063/1.4953785
255 G.T. Campbell,, O. Pinel,, M. Hosseini,, T.C. Ralph,, B.C. Buchler,, P.K. Lam,: Configurable unitary transformations and linear logic gates using quantum memories. Phys. Rev. Lett. 113, 063601(2014)
https://doi.org/10.1103/PhysRevLett.113.063601
256 N.C. Menicucci,, X. Ma,, T.C. Ralph,: Arbitrarily large continuous- variable cluster states from a single quantum nondemolition gate. Phys. Rev. Lett. 104, 250503(2010)
https://doi.org/10.1103/PhysRevLett.104.250503
257 N.C. Menicucci,: Temporal-mode continuous-variable cluster states using linear optics. Phys. Rev. A 83, 062314(2011)
https://doi.org/10.1103/PhysRevA.83.062314
258 S. Yokoyama,, R. Ukai,, S.C. Armstrong,, C. Sornphiphatphong,, T. Kaji,, S. Suzuki,, J. Yoshikawa,, H. Yonezawa,, N.C. Menicucci,, A. Furusawa,: Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photon. 7, 982(2013)
https://doi.org/10.1038/nphoton.2013.287
259 M. Chen,, N.C. Menicucci,, O. Pfister,: Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett. 112, 120505(2014)
https://doi.org/10.1103/PhysRevLett.112.120505
260 Y. Soudagar,, F. Bussières,, G. Berlín,, S. Lacroix,, J.M. Fernandez,, N. Godbout,: Cluster-state quantum computing in optical fibers. J. Opt. Soc. Am. B 24, 226–230 (2007)
https://doi.org/10.1364/JOSAB.24.000226
261 L. Shalm,, D. Hamel,, Z. Yan,, C. Simon,, K.J. Resch,, T. Jennewein,: Three-photon energy-time entanglement. Nat. Phys. 9, 19–22 (2013)
https://doi.org/10.1038/nphys2492
262 M. Hosseini,, B. Sparkes,, G. Hétet,, J.J. Longdell,, P.K. Lam,, B.C. Buchler,: Coherent optical pulse sequencer for quantum applications. Nature 461, 241–245 (2009)
https://doi.org/10.1038/nature08325
263 C. Autebert,, N. Bruno,, A. Martin,, A. Lemaitre,, C.G. Carbonell,, I. Favero,, G. Leo,, H. Zbinden,, S. Ducci,: Integrated AlGaAs source of highly indistinguishable and energy-time entangled photons. Optica 3, 143–146 (2016)
https://doi.org/10.1364/OPTICA.3.000143
264 D.V. Reddy,, M.G. Raymer,, C.J. McKinstrie,: Efficient sorting of quantum-optical wave packets by temporal-mode interferometry. Opt. Lett. 39, 2924–2927 (2014)
https://doi.org/10.1364/OL.39.002924
265 B. Brecht,, A. Eckstein,, R. Ricken,, V. Quiring,, H. Suche,, L. Sansoni,, C. Silberhorn,: Demonstration of coherent time-frequency Schmidt mode selection using dispersion-engineered frequency conversion. Phys. Rev. A 90, 030302(R) (2014)
https://doi.org/10.1103/PhysRevA.90.030302
266 E. Saglamyurek,, N. Sinclair,, J.A. Slater,, K. Heshami,, D. Oblak,, W. Tittel,: An integrated processor for photonic quantum states using a broadband light-matter interface. New J. Phys. 16, 065019(2014)
https://doi.org/10.1088/1367-2630/16/6/065019
267 E.H. Huntington,, T.C. Ralph,: Components for optical qubits encoded in sideband modes. Phys. Rev. A 69, 042318(2004)
https://doi.org/10.1103/PhysRevA.69.042318
268 S. Pirandola,, R. Laurenza,, C. Ottaviani,, L. Banchi,: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 1–15 (2017)
https://doi.org/10.1038/ncomms15043
269 L.-M. Duan,, M.D. Lukin,, J.I. Cirac,, P. Zoller,: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)
https://doi.org/10.1038/35106500
270 M.M. Wilde,, M. Tomamichel,, M. Berta,: Converse bounds for private communication over quantum channels. IEEE Trans. Inf. Theory 63, 1792–1817 (2017)
https://doi.org/10.1109/TIT.2017.2648825
271 S. Pirandola,: End-to-end capacities of a quantum communication network. Commun. Phys. 2, 1–10 (2019)
https://doi.org/10.1038/s42005-019-0147-3
272 M.S. Winnel,, J.J. Guanzon,, N. Hosseinidehaj,, T.C. Ralph,: Achieving the ultimate end-to-end rates of lossy quantum communication networks. npj Quantum Inf. 8, 129(2022)
https://doi.org/10.1038/s41534-022-00641-0
273 C.H. Bennett,, G. Brassard,: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 7–11 (2014)
https://doi.org/10.1016/j.tcs.2014.05.025
274 A.K. Ekert,: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661(1991)
https://doi.org/10.1103/PhysRevLett.67.661
275 T.C. Ralph,: Continuous variable quantum cryptography. Phys. Rev. A 61, 010303(1999)
https://doi.org/10.1103/PhysRevA.61.010303
276 M. Hillery,: Quantum cryptography with squeezed states. Phys. Rev. A 61, 022309(2000)
https://doi.org/10.1103/PhysRevA.61.022309
277 S.C. Wein,, J.C. Loredo,, M. Maffei,, P. Hilaire,, A. Harouri,, N. Somaschi,, A. Lemaître,, I. Sagnes,, L. Lanco,, O. Krebs,, A. Auffèves,, C. Simon,, P. Senellart,, C. Antón-Solanas,: Photon-number entanglement generated by sequential excitation of a two-level atom. Nat. Photon. 16, 374–379 (2022)
https://doi.org/10.1038/s41566-022-00979-z
278 A.C. Santos,, C. Schneider,, R. Bachelard,, A. Predojević,, C. Antón-Solanas,: Multipartite entanglement encoded in the photon-number basis by sequential excitation of a three-level system. Opt. Lett. 48, 6332–6335 (2023)
https://doi.org/10.1364/OL.506403
279 F. Arzani,, A. Ferraro,, V. Parigi,: High-dimensional quantum encoding via photon-subtracted squeezed states Phys. Rev. A 99, 022342(2019)
https://doi.org/10.1103/PhysRevA.99.022342
280 A. Ekert,, R. Renner,: The ultimate physical limits of privacy. Nature 507, 443–447 (2014)
https://doi.org/10.1038/nature13132
281 N. Gisin,, G. Ribordy,, W. Tittel,, H. Zbinden,: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)
https://doi.org/10.1103/RevModPhys.74.145
282 S. Pirandola,, U.L. Andersen,, L. Banchi,, M. Berta,, D. Bunandar,, R. Colbeck,, D. Englund,, T. Gehring,, C. Lupo,, C. Ottaviani,, J.L. Pereira,, M. Razavi,, J. Shamsul Shaari,, M. Tomamichel,, V.C. Usenko,, G. Vallone,, P. Villoresi,, P. Wallden,: Advances in quantum cryptography. Adv. Opt. Photon. 12, 1012–1236 (2020)
https://doi.org/10.1364/AOP.361502
283 N. Maring,, K. Kutluer,, J. Cohen,, M. Cristiani,, M. Mazzera,, P.M. Ledingham,, H. Riedmatten,: Storage of up-converted telecom photons in a doped crystal. N. J. Phys. 16, 113021(2014)
https://doi.org/10.1088/1367-2630/16/11/113021
284 W.J. Munro,, K. Azuma,, K. Tamaki,, K. Nemoto,: Inside quantum repeaters. IEEE J. Sel. Top. Quantum Electron. 21, 78–90 (2015)
https://doi.org/10.1109/JSTQE.2015.2392076
285 G.J. Milburn,: Photons as qubits. Phys. Scr. T137, 014003(2009)
https://doi.org/10.1088/0031-8949/2009/T137/014003
286 H.-K. Lo,, M. Curty,, B. Qi,: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503(2012)
https://doi.org/10.1103/PhysRevLett.108.130503
287 S. Pirandola,, C. Ottaviani,, G. Spedalieri,, C. Weedbrook,, S.L. Braunstein,, S. Lloyd,, T. Gehring,, C.S. Jacobsen,, U.L. Andersen,: High-rate measurement-device-independent quantum cryptography. Nat. Photon. 9, 397–402 (2015)
https://doi.org/10.1038/nphoton.2015.83
288 M. Lucamarini,, Z.L. Yuan,, J.F. Dynes,, A.J. Shields,: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018)
https://doi.org/10.1038/s41586-018-0066-6
289 X. Zhong,, J. Hu,, M. Curty,, L. Qian,, H.K. Lo,: Proof-of-principle experimental demonstration of twin-field type quantum key distribution. Phys. Rev. Lett. 123, 100506(2019)
https://doi.org/10.1103/PhysRevLett.123.100506
290 J.P. Chen,, C. Zhang,, Y. Liu,, C. Jiang,, W. Zhang,, X.L. Hu,, J.Y. Guan,, Z.W. Yu,, H. Xu,, J. Lin,, M.J. Li,, H. Chen,, H. Li,, L. You,, Z. Wang,, X.B. Wang,, Q. Zhang,, J.W. Pan,: Sending-or-not-sending with independent lasers: Secure twin-field quantum key distribution over 509 km. Phys. Rev. Lett. 124, 070501(2020)
https://doi.org/10.1103/PhysRevLett.124.070501
291 H. Liu,, C. Jiang,, H.T. Zhu,, M. Zou,, Z.W. Yu,, X.L. Hu,, H. Xu,, S. Ma,, Z. Han,, J.P. Chen,, Y. Dai,, S.B. Tang,, W. Zhang,, H. Li,, L. You,, Z. Wang,, Y. Hua,, H. Hu,, H. Zhang,, F. Zhou,, Q. Zhang,, X.B. Wang,, T.Y. Chen,, J.W. Pan,: Field test of twin-field quantum key distribution through sending-or-not-sending over 428 km. Phys. Rev. Lett. 126, 250502(2021)
https://doi.org/10.1103/PhysRevLett.126.250502
292 J.P. Chen,, C. Zhang,, Y. Liu,, C. Jiang,, W.J. Zhang,, Z.Y. Han,, S.Z. Ma,, X.L. Hu,, Y.H. Li,, H. Liu,, F. Zhou,, H.F. Jiang,, T.Y. Chen,, H. Li,, L.X. You,, Z. Wang,, X.B. Wang,, Q. Zhang,, J.W. Pan,: Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photon. 15, 570–575 (2021)
https://doi.org/10.1038/s41566-021-00828-5
293 J.P. Chen,, C. Zhang,, Y. Liu,, C. Jiang,, D.F. Zhao,, W.J. Zhang,, F.X. Chen,, H. Li,, L.X. You,, Z. Wang,, Y. Chen,, X.B. Wang,, Q. Zhang,, J.W. Pan,: Quantum key distribution over 658 km fiber with distributed vibration sensing. Phys. Rev. Lett. 128, 180502(2022)
https://doi.org/10.1103/PhysRevLett.128.180502
294 O. Erkilic,, L. Conlon,, B. Shajilal,, S. Kish,, S. Tserkis,, Y. Kim,, P. Lam,, S. Assad,: Surpassing the repeaterless bound with a photon-number encoded measurement-device-independent quantum key distribution protocol. npj Quantum Inf. 9, 29(2023)
https://doi.org/10.1038/s41534-023-00698-5
295 N. Sangouard,, C. Simon,, H. de Riedmatten,, N. Gisin,: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011)
https://doi.org/10.1103/RevModPhys.83.33
296 C. Simon,, H. de Riedmatten,, M. Afzelius,, N. Sangouard,, H. Zbinden,, N. Gisin,: Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503(2007)
https://doi.org/10.1103/PhysRevLett.98.190503
297 J. Dias,, M.S. Winnel,, N. Hosseinidehaj,, T.C. Ralph,: Quantum repeater for continuous-variable entanglement distribution. Phys. Rev. A 102, 052425(2020)
https://doi.org/10.1103/PhysRevA.102.052425
298 F. Bussières,, C. Clausen,, A. Tiranov,, B. Korzh,, V.B. Verma,, S.W. Nam,, F. Marsili,, A. Ferrier,, P. Goldner,, H. Herrmann,, C. Silberhorn,, W. Sohler,, M. Afzelius,, N. Gisin,: Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photon. 8, 775–778 (2014)
https://doi.org/10.1038/nphoton.2014.215
299 J.S. Stuart,, M. Hedges,, R. Ahlefeldt,, M. Sellars,: Initialization protocol for efficient quantum memories using resolved hyperfine structure. Phys. Rev. Res. 3, L032054(2021)
https://doi.org/10.1103/PhysRevResearch.3.L032054
300 A.M. Goebel,, C. Wagenknecht,, Q. Zhang,, Y.A. Chen,, K. Chen,, J. Schmiedmayer,, J.W. Pan,: Multistage entanglement swapping. Phys. Rev. Lett. 101, 080403(2008)
https://doi.org/10.1103/PhysRevLett.101.080403
301 R. Kaltenbaek,, R. Prevedel,, M. Aspelmeyer,, A. Zeilinger,: High-fidelity entanglement swapping with fully independent sources. Phys. Rev. A 79, 040302(2009)
https://doi.org/10.1103/PhysRevA.79.040302
302 Z.-D. Li,, R. Zhang,, X.F. Yin,, L.Z. Liu,, Y. Hu,, Y.Q. Fang,, Y.Y. Fei,, X. Jiang,, J. Zhang,, L. Li,, N.L. Liu,, F. Xu,, Y.A. Chen,, J.W. Pan,: Experimental quantum repeater without quantum memory. Nat. Photon. 13, 644–648 (2019)
https://doi.org/10.1038/s41566-019-0468-5
303 L. Allen,, S.M. Barnett,, M.J. Padgett,: Optical Angular Momentum. CRC Press (2003)
304 L. Allen,, M.W. Beijersbergen,, R.J.C. Spreeuw,, J.P. Woerdman,: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)
https://doi.org/10.1103/PhysRevA.45.8185
305 A.M. Yao,, M.J. Padgett,: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011)
https://doi.org/10.1364/AOP.3.000161
306 J.P. Torres,, L. Torner,: Twisted Photons: Applications of Light with Orbital Angular Momentum. Wiley-VCH (2011)
307 D.G. Grier,: A revolution in optical manipulation. Nature 424, 810–816 (2003)
https://doi.org/10.1038/nature01935
308 N. Uribe-Patarroyo,, A. Fraine,, D.S. Simon,, O. Minaeva,, A.V. Sergienko,: Object identification using correlated orbital angular momentum states. Phys. Rev. Lett. 110, 043601(2013)
https://doi.org/10.1103/PhysRevLett.110.043601
309 J. Wang,, J.Y. Yang,, I.M. Fazal,, N. Ahmed,, Y. Yan,, H. Huang,, Y. Ren,, Y. Yue,, S. Dolinar,, M. Tur,, A.E. Willner,: Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012)
https://doi.org/10.1038/nphoton.2012.138
310 A. Mair,, A. Vaziri,, G. Weihs,, A. Zeilinger,: Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001)
https://doi.org/10.1038/35085529
311 J. Leach,, M.J. Padgett,, S.M. Barnett,, S. Franke-Arnold,, J. Courtial,: Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett. 88, 257901(2002)
https://doi.org/10.1103/PhysRevLett.88.257901
312 M. Padgett,, R. Bowman,: Tweezers with a twist. Nat. Photon. 5, 343–348 (2011)
https://doi.org/10.1038/nphoton.2011.81
313 K. Dholakia,, T. Čižmár,: Shaping the future of manipulation. Nat. Photon. 5, 335–342 (2011)
https://doi.org/10.1038/nphoton.2011.80
314 D. Moretti,, D. Felinto,, J. W. R. Tabosa,: Storage and manipulation of orbital angular momentum of light in a cold atomic ensemble. In: CLEO/Europe—EQEC 2009—European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference, Munich, Germany, pp. 1–1 (2009)
https://doi.org/10.1109/CLEOE-EQEC.2009.5191698
315 X.J. Liu,, X. Liu,, L.C. Kwek,, C.H. Oh,: Manipulating atomic states via optical orbital angular-momentum. Front. Phys. China 3, 113–125 (2008)
https://doi.org/10.1007/s11467-008-0024-0
316 K. Toyoda,, K. Miyamoto,, N. Aoki,, R. Morita,, T. Omatsu,: Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett. 12, 3645–3649 (2012)
https://doi.org/10.1021/nl301347j
317 F. Tamburini,, G. Anzolin,, G. Umbriaco,, A. Bianchini,, C. Barbieri,: Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett. 97, 163903(2006)
https://doi.org/10.1103/PhysRevLett.97.163903
318 S. Fürhapter,, A. Jesacher,, S. Bernet,, M. Ritsch-Marte,: Spiral interferometry. Opt. Lett. 30, 1953–1955 (2005)
https://doi.org/10.1364/OL.30.001953
319 V. Grillo,, T.R. Harvey,, F. Venturi,, J.S. Pierce,, R. Balboni,, F. Bouchard,, G. Carlo Gazzadi,, S. Frabboni,, A.H. Tavabi,, Z.A. Li,, R.E. Dunin-Borkowski,, R.W. Boyd,, B.J. McMorran,, E. Karimi,: Observation of nanoscale magnetic fields using twisted electron beams. Nat. Commun. 8, 689(2017)
https://doi.org/10.1038/s41467-017-00829-5
320 Y. Noguchi,, S. Nakayama,, T. Ishida,, K. Saitoh,, M. Uchida,: Efficient measurement of the orbital-angular-momentum spectrum of an electron beam via a Dammann vortex grating. Phys. Rev. Appl. 12, 064062(2019)
https://doi.org/10.1103/PhysRevApplied.12.064062
321 S.K. Noor,, M.N.M. Yasin,, A.M. Ismail,, M.N. Osman,, P.J. Soh,, N. Ramli,, A.H. Rambe,: A review of orbital angular momentum vortex waves for the next generation wireless communications. IEEE Access 10, 89465–89484 (2022)
https://doi.org/10.1109/ACCESS.2022.3197653
322 E. Lamilla,, C. Sacarelo,, M.S. Alvarez-Alvarado,, A. Pazmino,, P. Iza,: Optical encoding model based on orbital angular momentum powered by machine learning. Sensors 23, 2755(2023)
https://doi.org/10.3390/s23052755
323 J. Zhu,, L. Wang,, S. Zhao,: Orbital angular momentum multiplexing holography for data storage. IEEE Photon. Technol. Lett. 35, 179–182 (2023)
https://doi.org/10.1109/LPT.2022.3230145
324 D.S. Ding,, W. Zhang,, Z.Y. Zhou,, S. Shi,, G.Y. Xiang,, X.S. Wang,, Y.K. Jiang,, B.S. Shi,, G.C. Guo,: Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys. Rev. Lett. 114, 050502(2015)
https://doi.org/10.1103/PhysRevLett.114.050502
325 P. Mcmanamon,, A. Vedadi,, A.E. Willner,, D. Choudhary,, N. Montifiore,, O. Harlev,: High capacity and access rate, data storage using laser communications. Opt. Eng. 60, 015105(2021)
https://doi.org/10.1117/1.OE.60.1.015105
326 A. Vaziri,, J.-W. Pan,, T. Jennewein,, G. Weihs,, A. Zeilinger,: Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum. Phys. Rev. Lett. 91, 227902(2003)
https://doi.org/10.1103/PhysRevLett.91.227902
327 G. Molina-Terriza,, J.P. Torres,, L. Torner,: Twisted photons. Nat. Phys. 3, 305–310 (2007)
https://doi.org/10.1038/nphys607
328 E. Nagali,, L. Sansoni,, F. Sciarrino,, F. De Martini,, L. Marrucci,, B. Piccirillo,, E. Karimi,, E. Santamato,: Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence. Nat. Photon. 3, 720–723(2009)
https://doi.org/10.1038/nphoton.2009.214
329 B.-J. Pors,, F. Miatto,, G.W. Hooft,, E.R. Eliel,, J.P. Woerdman,: High-dimensional entanglement with orbital-angular-momentum states of light. J. Opt. 13, 064008(2011)
https://doi.org/10.1088/2040-8978/13/6/064008
330 S.M. Lloyd,, M. Babiker,, G. Thirunavukkarasu,, J. Yuan,: Electron vortices: beams with orbital angular momentum. Rev. Mod. Phys. 89, 035004(2017)
https://doi.org/10.1103/RevModPhys.89.035004
331 M. Zahidy,, Y. Liu,, D. Cozzolino,, Y. Ding,, T. Morioka,, L.K. Oxenløwe,, D. Bacco,: Photonic integrated chip enabling orbital angular momentum multiplexing for quantum communication. Nanophotonics 11(4), 821–827 (2022)
https://doi.org/10.1515/nanoph-2021-0500
332 T.M. Olaleye,, P.A. Ribeiro,, M. Raposo,: Generation of photon orbital angular momentum and its application in space division multiplexing. Photonics 10, 664(2023)
https://doi.org/10.3390/photonics10060664
333 C. Wu,, S. Kumar,, Y. Kan,, D. Komisar,, Z. Wang,, S.I. Bozhevolnyi,, F. Ding,: Room-temperature on-chip orbital angular momentum single-photon sources. Sci. Adv. 8, eabk3075(2022)
https://doi.org/10.1126/sciadv.abk3075
334 S. Gröblacher,, T. Jennewein,, A. Vaziris,, G. Weihs,, A. Zeilinger,: Experimental quantum cryptography with qutrits. New J. Phys. 8, 75(2006)
https://doi.org/10.1088/1367-2630/8/5/075
335 N.K. Langford,, R.B. Dalton,, M.D. Harvey,, J.L. O’Brien,, G.J. Pryde,, A. Gilchrist,, S.D. Bartlett,, A.G. White,: Measuring entangled qutrits and their use for quantum bit commitment. Phys. Rev. Lett. 93, 053601(2004)
https://doi.org/10.1103/PhysRevLett.93.053601
336 G. Molina-Terriza,, A. Vaziri,, R. Ursin,, A. Zeilinger,: Experimental quantum coin tossing. Phys. Rev. Lett. 94, 040501(2005)
https://doi.org/10.1103/PhysRevLett.94.040501
337 A.C. Dada,, J. Leach,, G.S. Buller,, M.J. Padgett,, E. Andersson,: Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys. 7, 677–680 (2011)
https://doi.org/10.1038/nphys1996
338 F. Bouchard,, R. Fickler,, R.W. Boyd,, E. Karimi,: High-dimensional quantum cloning and applications to quantum hacking. Sci. Adv. 3, e1601915(2017)
https://doi.org/10.1126/sciadv.1601915
339 E. Nagali,, L. Sansoni,, F. Sciarrino,, F. De Martini,, L. Marrucci,, B. Piccirillo,, E. Karimi,, E. Santamato,: Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence. Nat. Photon. 3, 720–723 (2009)
https://doi.org/10.1038/nphoton.2009.214
340 A. Hamadou Ibrahim,, F.S. Roux,, M. McLaren,, T. Konrad,, A. Forbes,: Orbital-angular-momentum entanglement in turbulence. Phys. Rev. A 88, 012312(2013)
https://doi.org/10.1103/PhysRevA.88.012312
341 S. Goyal,, P. Boukama-Dzoussi,, S. Ghosh,, F.S. Roux,, T. Konrad,: Qudit-Teleportation for photons with linear optics. Sci. Rep. 4, 4543(2014)
https://doi.org/10.1038/srep04543
342 S.K. Goyal,, A.H. Ibrahim,, F.S. Roux,, T. Konrad,, A. Forbes,: The effect of turbulence on entanglement-based free-space quantum key distribution with photonic orbital angular momentum. J. Opt. 18, 064002(2016)
https://doi.org/10.1088/2040-8978/18/6/064002
343 M. Krenn,, J. Handsteiner,, M. Fink,, R. Fickler,, A. Zeilinger,: Twisted photon entanglement through turbulent air across Vienna. PNAS 112(46), 14197–14201 (2015)
https://doi.org/10.1073/pnas.1517574112
344 B.C. Hiesmayr,, M.J.A. de Dood,, W. Löffler,: Observation of four-photon orbital angular momentum entanglement. Phys. Rev. Lett. 116, 073601(2016)
https://doi.org/10.1103/PhysRevLett.116.073601
345 M. Malik,, M. Erhard,, M. Huber,, M. Krenn,, R. Fickler,, A. Zeilinger,: Multi-photon entanglement in high dimensions. Nat. Photon. 10, 248–252 (2016)
https://doi.org/10.1038/nphoton.2016.12
346 M. Erhard,, M. Malik,, A. Zeilinger,: A quantum router for high-dimensional entanglement. Quantum Sci. Technol. 2, 014001(2017)
https://doi.org/10.1088/2058-9565/aa5917
347 R. Fickler,, G. Campbell,, B. Buchler,, P.K. Lam,, A. Zeilinger,: Quantum entanglement of angular momentum states with quantum numbers up to 10,010. PNAS 113(48), 13642–13647 (2016)
https://doi.org/10.1073/pnas.1616889113
348 M. Erhard,, M. Malik,, M. Krenn,, et al.: Experimental Green-berger- Horne-Zeilinger entanglement beyond qubits. Nat. Photon. 12, 759–764 (2018)
https://doi.org/10.1038/s41566-018-0257-6
349 N. Leonhard,, G. Sorelli,, V.N. Shatokhin,, C. Reinlein,, A. Buchleitner,: Protecting the entanglement of twisted photons by adaptive optics. Phys. Rev. A 97, 012321(2018)
https://doi.org/10.1103/PhysRevA.97.012321
350 H.J. Kimble,: The quantum internet. Nature 453, 1023–1030 (2008)
https://doi.org/10.1038/nature07127
351 C.S. Hamilton,, A. Gábris,, I. Jex,, S.M. Barnett,: Quantum walk with a four-dimensional coin. New J. Phys. 13, 013015(2011)
https://doi.org/10.1088/1367-2630/13/1/013015
352 L. Innocenti,, H. Majury,, T. Giordani,, N. Spagnolo,, F. Sciarrino,, M. Paternostro,, A. Ferraro,: Quantum state engineering using one-dimensional discrete-time quantum walks. Phys. Rev. A 96, 062326(2017)
https://doi.org/10.1103/PhysRevA.96.062326
353 F. Cardano,, F. Massa,, H. Qassim,, E. Karimi,, S. Slussarenko,, D. Paparo,, C. de Lisio,, F. Sciarrino,, E. Santamato,, R.W. Boyd,, L. Marrucci,: Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci. Adv. 1, e1500087(2015)
https://doi.org/10.1126/sciadv.1500087
354 F. Cardano,, M. Maffei,, F. Massa,, B. Piccirillo,, C. de Lisio,, G. De Filippis,, V. Cataudella,, E. Santamato,, L. Marrucci,: Statistical moments of quantum-walk dynamics reveal topological quantum transitions. Nat. Commun. 7, 11439(2016)
https://doi.org/10.1038/ncomms11439
355 P. Zhang,, B.H. Liu,, R.F. Liu,, H.R. Li,, F.L. Li,, G.C. Guo,: Implementation of one-dimensional quantum walks on spinorbital angular momentum space of photons. Phys. Rev. A 81, 052322(2010)
https://doi.org/10.1103/PhysRevA.81.052322
356 F. Cardano,, A. D’Errico,, A. Dauphin,, M. Maffei,, B. Piccirillo,, C. de Lisio,, G. De Filippis,, V. Cataudella,, E. Santamato,, L. Marrucci,, M. Lewenstein,, P. Massignan,: Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons. Nat. Commun. 8, 15516(2017)
https://doi.org/10.1038/ncomms15516
357 M. Erhard,, R. Fickler,, M. Krenn,, A. Zeilinger,: Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl. 7, 17146(2018)
https://doi.org/10.1038/lsa.2017.146
358 G. Vallone,, V. D’Ambrosio,, A. Sponselli,, S. Slussarenko,, L. Marrucci,, F. Sciarrino,, P. Villoresi,: Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503(2014)
https://doi.org/10.1103/PhysRevLett.113.060503
359 M. Mirhosseini,, O.S. Magaña-Loaiza,, M.N. O’Sullivan,, B. Rodenburg,, M. Malik,, M.P.J. Lavery,, M.J. Padgett,, D.J. Gauthier,, R.W. Boyd,: High-dimensional quantum cryptography with twisted light. New J. Phys. 17, 033033(2015)
https://doi.org/10.1088/1367-2630/17/3/033033
360 T. Lei,, M. Zhang,, Y. Li,, P. Jia,, G.N. Liu,, X. Xu,, Z. Li,, C. Min,, J. Lin,, C. Yu,, H. Niu,, X. Yuan,: Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl. 4, e257(2015)
https://doi.org/10.1038/lsa.2015.30
361 F.X. Wang,, W. Chen,, Z.Q. Yin,, S. Wang,, G.C. Guo,, Z.F. Han,: Erratum: scalable orbital-angular-momentum sorting without destroying photon states. Phys. Rev. A 95, 019903(2017)
https://doi.org/10.1103/PhysRevA.95.019903
362 Z. Pan,, J. Cai,, C. Wang,: Quantum key distribution with high order Fibonacci-like orbital angular momentum states. Int. J. Theor. Phys. 56, 2622–2634 (2017)
https://doi.org/10.1007/s10773-017-3418-3
363 A. Sit,, F. Bouchard,, R. Fickler,, J. Gagnon-Bischoff,, H. Larocque,, K. Heshami,, D. Elser,, C. Peuntinger,, K. Günthner,, B. Heim,, C. Marquardt,: High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017)
https://doi.org/10.1364/OPTICA.4.001006
364 M. Mafu,, A. Dudley,, S. Goyal,, D. Giovannini,, M. McLaren,, M.J. Padgett,, T. Konrad,, F. Petruccione,, N. Lütkenhaus,, A. Forbes,: Higher-dimensional orbital-angular-momentumbased quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305(2013)
https://doi.org/10.1103/PhysRevA.88.032305
365 V. D’Ambrosio,, N. Spagnolo,, L. Del Re,, S. Slussarenko,, Y. Li,, L.C. Kwek,, L. Marrucci,, S.P. Walborn,, L. Aolita,, F. Sciarrino,: Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun. 4, 2432(2013)
https://doi.org/10.1038/ncomms3432
366 A.K. Jha,, G.S. Agarwal,, R.W. Boyd,: Supersensitive measurement of angular displacements using entangled photons. Phys. Rev. A 83, 053829(2011)
https://doi.org/10.1103/PhysRevA.83.053829
367 E. Karimi,, B. Piccirillo,, E. Nagali,, L. Marrucci,, E. Santamato,: Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl. Phys. Lett. 94, 231124(2009)
https://doi.org/10.1063/1.3154549
368 W. Zhang,, Q. Qi,, J. Zhou,, L. Chen,: Mimicking faraday rotation to sort the orbital angular momentum of light. Phys. Rev. Lett. 112, 153601(2014)
https://doi.org/10.1103/PhysRevLett.112.153601
369 X.L. Wang,, X.D. Cai,, Z.E. Su,, M.C. Chen,, D. Wu,, L. Li,, N.L. Liu,, C.Y. Lu,, J.W. Pan,: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015)
https://doi.org/10.1038/nature14246
370 S. Goyal,, T. Konrad,: Teleporting photonic qudits using multimode quantum scissors. Sci. Rep. 3, 3548(2013)
https://doi.org/10.1038/srep03548
371 D.S. Ding,, Z.Y. Zhou,, B.S. Shi,, G.C. Guo,: Single-photon-level quantum image memory based on cold atomic ensembles. Nat. Commun. 4, 2527(2013)
https://doi.org/10.1038/ncomms3527
372 X. Cai,, J. Wang,, M. J. Strain,, B. Johnson-Morris,, J. Zhu,, M. Sorel,, J. O’Brien,, M. Thompson,, S. Yu,: Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012)
https://doi.org/10.1126/science.1226528
373 J.R.G. Alonso,, T.A. Brun,: Protecting orbital-angular-momentum photons from decoherence in a turbulent atmosphere. Phys. Rev. A 88, 022326(2013)
https://doi.org/10.1103/PhysRevA.88.022326
374 J.R.G. Alonso,, T. Brun,: Recovering quantum information in orbital angular momentum of photons by adaptive optics. arXive preprints arXiv: 1612. 02552 [quant-ph] (2016)
375 M.J. Padgett,, F.M. Miatto,, M.P.J. Lavery,, A. Zeilinger,, R.W. Boyd,: Divergence of an orbital-angular-momentum-carrying beam upon propagation. New J. Phys. 17, 023011(2015)
https://doi.org/10.1088/1367-2630/17/2/023011
376 O. Farías,, V. D’Ambrosio,, C. Taballione,, F. Bisesto,, S. Slussarenko,, L. Aolita,, L. Marrucci,, S.P. Walborn,, F. Sciarrino,: Resilience of hybrid optical angular momentum qubits to turbulence. Sci. Rep. 5, 8424(2015)
https://doi.org/10.1038/srep08424
377 A.I. Lvovsky,, B.C. Sanders,, W. Tittel,: Optical quantum memory. Nat. Photon. 3, 706–714 (2009)
https://doi.org/10.1038/nphoton.2009.231
378 R. Inoue,, N. Kanai,, T. Yonehara,, Y. Miyamoto,, M. Koashi,, M. Kozuma,: Entanglement of orbital angular momentum states between an ensemble of cold atoms and a photon. Phys. Rev. A 74, 053809(2006)
https://doi.org/10.1103/PhysRevA.74.053809
379 R. Pugatch,, M. Shuker,, O. Firstenberg,, A. Ron,, N. Davidson,: Topological stability of optical vortices. Phys. Rev. Lett. 98, 203601(2007)
https://doi.org/10.1103/PhysRevLett.98.203601
380 D. Moretti,, D. Felinto,, J.W.R. Tabosa,: Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble. Phys. Rev. A 79, 023825(2009)
https://doi.org/10.1103/PhysRevA.79.023825
381 L. Veissier,, A. Nicolas,, L. Giner,, D. Maxein,, A.S. Sheremet,, E. Giacobino,, J. Laurat,: Reversible optical memory for twisted photons. Opt. Lett. 38, 712–714 (2013)
https://doi.org/10.1364/OL.38.000712
382 D.S. Ding,, Z.Y. Zhou,, B.S. Shi,, G.G. Guo,: Single-photon level quantum image memory based on cold atomic ensembles. Nat. Commun. 4, 2527(2013)
https://doi.org/10.1038/ncomms3527
383 A. Nicolas,, L. Veissier,, L. Giner,, E. Giacobino,, D. Maxein,, J. Laurat,: A quantum memory for orbital angular momentum photonic qubits. Nat. Photon. 8, 234–238 (2014)
https://doi.org/10.1038/nphoton.2013.355
384 Z.Y. Zhou,, Y. Li,, D.S. Ding,, W. Zhang,, S. Shi,, B.S. Shi,, G.C. Guo,: Orbital angular momentum photonic quantum interface. Light Sci. Appl. 5, e16019(2016)
https://doi.org/10.1038/lsa.2016.19
385 C.Q. Choi,: Two of world’s biggest quantum computers made in China: Quantum computers Zuchongzi and Jiuzhang 2.0 may both display “quantum primacy” over classical computers. IEEE Spectrum (2021). Available at the website of spectrum.ieee.org/quantum-computing-china
386 Y.H. Chen,, C.H. Cho,, W. Yuan,, Y. Ma,, K. Wen,, C.R. Chang,: Photonic quantum computers enlighten the world: a review of their development, types, and applications. IEEE Nanatechnol. Mag. 16(4), 4–9 (2022)
https://doi.org/10.1109/MNANO.2022.3175382
387 B. Bartlett,, A. Dutt,, S. Fan,: Deterministic photonic quantum computation in a synthetic time dimension. Optica 8, 1515–1523 (2021)
https://doi.org/10.1364/OPTICA.424258
388 P.W. Shor,: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303(1999)
https://doi.org/10.1137/S0036144598347011
389 L.K. Grover,: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325(1997)
https://doi.org/10.1103/PhysRevLett.79.325
390 O. Pfister,: Continuous-variable quantum computing in the quantum optical frequency comb. J. Phys. B: At. Mol. Opt. Phys. 53, 012001(2019)
https://doi.org/10.1088/1361-6455/ab526f
391 K. Fukui,, S. Takeda,: Building a large-scale quantum computer with continuous-variable optical technologies. J. Phys. B: At. Mol. Opt. Phys. 55, 012001(2022)
https://doi.org/10.1088/1361-6455/ac489c
392 J. Yoshikawa,, S. Yokoyama,, T. Kaji,, C. Sornphiphatphong,, Y. Shiozawa,, K. Makino,, A. Furusawa,: Generation of onemillion- mode continuous-variable cluster state by unlimited time-domain multiplexing. APL Photon. 1(6), 060801(2016)
https://doi.org/10.1063/1.4962732
393 W. Asavanant,, Y. Shiozawa,, S. Yokoyama,, B. Charoensombutamon,, H. Emura,, R.N. Alexander,, S. Takeda,, J.I. Yoshikawa,, N.C. Menicucci,, H. Yonezawa,, A. Furusawa,: Generation of time-domain-multiplexed two-dimensional cluster state. Science 366(6463), 373–376 (2019)
https://doi.org/10.1126/science.aay2645
394 M.V. Larsen,, X. Guo,, C.R. Breum,, J.S. Neergaard-Nielsen,, U.L. Andersen,: Deterministic generation of a two-dimensional cluster state. Science 366, 369(2019)
https://doi.org/10.1126/science.aay4354
395 M.V. Larsen,, X. Guo,, C.R. Breum,, J.S. Neergaard-Nielsen,, U.L. Andersen,: Deterministic multi-mode gates on a scalable photonic quantum computing platform. Nat. Phys. 17, 1018–1023(2021)
https://doi.org/10.1038/s41567-021-01296-y
396 W. Asavanant,, B. Charoensombutamon,, S. Yokoyama,, T. Ebihara,, T. Nakamura,, R.N. Alexander,, M. Endo,, J.I. Yoshikawa,, N.C. Menicucci,, H. Yonezawa,, A. Furusawa,: Time-domainmultiplexed measurement-based quantum operations with 25-mHz clock frequency. Phys. Rev. Appl. 16, 034005(2021)
https://doi.org/10.1103/PhysRevApplied.16.034005
397 M. Pysher,, Y. Miwa,, R. Shahrokhshahi,, R. Bloomer,, O. Pfister,: Parallel generation of quadripartite cluster entanglement in the optical frequency comb. Phys. Rev. Lett. 107, 030505(2011)
https://doi.org/10.1103/PhysRevLett.107.030505
398 Y. Cai,, J. Roslund,, G. Ferrini,, F. Arzani,, X. Xu,, C. Fabre,, N. Treps,: Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 8, 15645(2017)
https://doi.org/10.1038/ncomms15645
399 A.L. Grimsmo,, A. Blais,: Squeezing and quantum state engineering with Josephson travelling wave amplifiers. npj Quantum Inf. 3, 20(2017)
https://doi.org/10.1038/s41534-017-0020-8
400 M. Schmidt,, M. Ludwig,, F. Marquardt,: Optomechanical circuits for nanomechanical continuous variable quantum state processing. New J. Phys. 14, 125005(2012)
https://doi.org/10.1088/1367-2630/14/12/125005
401 O. Houhou,, H. Aissaoui,, A. Ferraro,: Generation of cluster states in optomechanical quantum systems. Phys. Rev. A 92, 063843(2015)
https://doi.org/10.1103/PhysRevA.92.063843
402 Y. Ikeda,, N. Yamamoto,: Deterministic generation of gaussian pure states in a quasilocal dissipative system. Phys. Rev. A 87, 033802(2013)
https://doi.org/10.1103/PhysRevA.87.033802
403 K.R. Motes,, B.Q. Baragiola,, A. Gilchrist,, N.C. Menicucci,: Encoding qubits into oscillators with atomic ensembles and squeezed light. Phys. Rev. A 95, 053819(2017)
https://doi.org/10.1103/PhysRevA.95.053819
404 C. Flühmann,, V. Negnevitsky,, M. Marinelli,, J.P. Home,: Sequential modular position and momentum measurements of a trapped ion mechanical oscillator. Phys. Rev. X 8, 02100110(2018)
https://doi.org/10.1103/PhysRevX.8.021001
405 C. Flühmann,, T.L. Nguyen,, M. Marinelli,, V. Negnevitsky,, K. Mehta,, J. Home,: Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513(2019)
https://doi.org/10.1038/s41586-019-0960-6
406 D. Pegg,, S. Barnett,: Phase properties of the quantized single-mode electromagnetic field. Phys. Rev. A 39, 1665(1989)
https://doi.org/10.1103/PhysRevA.39.1665
407 I.L. Chuang,, D.W. Leung,, Y. Yamamoto,: Bosonic quantum codes for amplitude damping. Phys. Rev. A 56, 1114(1997)
https://doi.org/10.1103/PhysRevA.56.1114
408 V.V. Albert,, K. Noh,, K. Duivenvoorden,, D.J. Young,, R. Brierley,, P. Reinhold,, C. Vuillot,, L. Li,, C. Shen,, S. Girvin,, B.M. Terhal,, L. Jiang,: Performance and structure of single-mode bosonic codes. Phys. Rev. A 97, 032346(2018)
https://doi.org/10.1103/PhysRevA.97.032346
409 A.L. Grimsmo,, J. Combes,, B.Q. Baragiola,: Quantum computing with rotation-symmetric bosonic codes. Phys. Rev. X 10, 011058(2020)
https://doi.org/10.1103/PhysRevX.10.011058
410 P.T. Cochrane,, G.J. Milburn,, W.J. Munro,: Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping. Phys. Rev. A 59, 2631(1999)
https://doi.org/10.1103/PhysRevA.59.2631
411 M.H. Michael,, M. Silveri,, R. Brierley,, V.V. Albert,, J. Salmilehto,, L. Jiang,, S.M. Girvin,: New class of quantum errorcorrecting codes for a bosonic mode. Phys. Rev. X 6, 031006(2016)
https://doi.org/10.1103/PhysRevX.6.031006
412 D. Gottesman,, A. Kitaev,, J. Preskill,: Encoding a qubit in an oscillator. Phys. Rev. A 64(1), 012310(2001)
https://doi.org/10.1103/PhysRevA.64.012310
413 N.C. Menicucci,: Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. Phys. Rev. Lett. 112, 120504(2014)
https://doi.org/10.1103/PhysRevLett.112.120504
414 K. Fukui,, A. Tomita,, A. Okamoto,: Analog quantum error correction with encoding a qubit into an oscillator. Phys. Rev. Lett. 119, 180507(2017)
https://doi.org/10.1103/PhysRevLett.119.180507
415 K. Fukui,, A. Tomita,, A. Okamoto,, K. Fujii,: High-threshold fault-tolerant quantum computation with analog quantum error correction. Phys. Rev. X 8, 021054(2018)
https://doi.org/10.1103/PhysRevX.8.021054
416 T. Douce,, D. Markham,, E. Kashefi,, P. Van Loock,, G. Ferrini,: Probabilistic fault-tolerant universal quantum computation and sampling problems in continuous variables. Phys. Rev. A 99, 012344(2019)
https://doi.org/10.1103/PhysRevA.99.012344
417 C. Vuillot,, H. Asasi,, Y. Wang,, L.P. Pryadko,, B.M. Terhal,: Quantum error correction with the toric Gottesman-Kitaev-Preskill code. Phys. Rev. A 99, 032344(2019)
https://doi.org/10.1103/PhysRevA.99.032344
418 B.Q. Baragiola,, G. Pantaleoni,, R.N. Alexander,, A. Karanjai,, N.C. Menicucci,: All-gaussian universality and fault tolerance with the Gottesman-Kitaev-Preskill code. Phys. Rev. Lett. 123, 200502(2019)
https://doi.org/10.1103/PhysRevLett.123.200502
419 Y. Shi,, C. Chamberland,, A. Cross,: Fault-tolerant preparation of approximate GKP states. New J. Phys. 21, 093007(2019)
https://doi.org/10.1088/1367-2630/ab3a62
420 B.W. Walshe,, L.J. Mensen,, B.Q. Baragiola,, N.C. Menicucci,: Robust fault tolerance for continuous-variable cluster states with excess antisqueezing. Phys. Rev. A 100, 010301(2019)
https://doi.org/10.1103/PhysRevA.100.010301
421 G. Pantaleoni,, B.Q. Baragiola,, N.C. Menicucci,: Modular bosonic subsystem codes. Phys. Rev. Lett. 125, 040501(2020)
https://doi.org/10.1103/PhysRevLett.125.040501
422 B.W. Walshe,, B.Q. Baragiola,, R.N. Alexander,, N.C. Menicucci,: Continuous-variable gate teleportation and bosonic-code error correction. Phys. Rev. A 102, 062411(2020)
https://doi.org/10.1103/PhysRevA.102.062411
423 G. Pantaleoni,, B.Q. Baragiola,, N.C. Menicucci,: Subsystem analysis of continuous-variable resource states. Phys. Rev. A 104, 012430(2021)
https://doi.org/10.1103/PhysRevA.104.012430
424 A.L. Grimsmo,, S. Puri,: Quantum error correction with the Gottesman-Kitaev-Preskill code. PRX Quantum 2, 020101(2021)
https://doi.org/10.1103/PRXQuantum.2.020101
425 K. Fukui,, A. Tomita,, A. Okamoto,: Tracking quantum error correction. Phys. Rev. A 98, 022326(2018)
https://doi.org/10.1103/PhysRevA.98.022326
426 K. Noh,, C. Chamberland,: Fault-tolerant bosonic quantum error correction with the surface-Gottesman-Kitaev-Preskill code. Phys. Rev. A 101, 012316(2020)
https://doi.org/10.1103/PhysRevA.101.012316
427 K. Noh,, S. Girvin,, L. Jiang,: Encoding an oscillator into many oscillators. Phys. Rev. Lett. 125, 080503(2020)
https://doi.org/10.1103/PhysRevLett.125.080503
428 H. Yamasaki,, K. Fukui,, Y. Takeuchi,, S. Tani,, M. Koashi,: Polylog-overhead highly fault-tolerant measurement-based quantum computation: all-gaussian implementation with gottesmankitaev-preskill code. arXiv preprint arXiv: 2006.05416(2020)
429 K. Noh,, C. Chamberland,, F. G. Brandão,: Low overhead fault-tolerant quantum error correction with the surface-gkp code. arXiv preprint arXiv: 2103.06994(2021)
430 I. Tzitrin,, T. Matsuura,, R.N. Alexander,, G. Dauphinais,, J.E. Bourassa,, K.K. Sabapathy,, N.C. Menicucci,, I. Dhand,: Fault-tolerant quantum computation with static linear optics. PRX Quantum 2, 040353(2021)
https://doi.org/10.1103/PRXQuantum.2.040353
431 K.P. Seshadreesan,, P. Dhara,, A. Patil,, L. Jiang,, S. Guha,: Coherent manipulation of graph states composed of finite-energy Gottesman-Kitaev-Preskill-encoded qubits. Phys. Rev. A 105, 052416(2022)
https://doi.org/10.1103/PhysRevA.105.052416
432 M. P. Stafford,, N. C. Menicucci,: Biased gottesman-kitaevpreskill repetition code. arXiv preprint arXiv: 2212.11397(2022)
433 S. Takeda,, A. Furusawa,: Universal quantum computing with measurement-induced continuous-variable gate sequence in a loop-based architecture. Phys. Rev. Lett. 119, 120504(2017)
https://doi.org/10.1103/PhysRevLett.119.120504
434 R.N. Alexander,, S. Yokoyama,, A. Furusawa,, N.C. Menicucci,: Universal quantum computation with temporal-mode bilayer square lattices. Phys. Rev. A 97, 032302(2018)
https://doi.org/10.1103/PhysRevA.97.032302
435 K. Fukui,, R.N. Alexander,, P. van Loock,: All-optical long-distance quantum communication with Gottesman-Kitaev-Preskill qubits. Phys. Rev. Res. 3, 033118(2021)
https://doi.org/10.1103/PhysRevResearch.3.033118
436 F. Rozpędek,, K. Noh,, Q. Xu,, S. Guha,, L. Jiang,: Quantum repeaters based on concatenated bosonic and discrete-variable quantum codes. npj Quantum Inf. 7, 102(2021)
https://doi.org/10.1038/s41534-021-00438-7
437 B. Terhal,, D. Weigand,: Encoding a qubit into a cavity mode in circuit QED using phase estimation. Phys. Rev. A 93, 012315(2016)
https://doi.org/10.1103/PhysRevA.93.012315
438 P. Campagne-Ibarcq,, A. Eickbusch,, S. Touzard,, E. Zalys-Geller,, N.E. Frattini,, V.V. Sivak,, P. Reinhold,, S. Puri,, S. Shankar,, R.J. Schoelkopf,, L. Frunzio,, M. Mirrahimi,, M.H. Devoret,: Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368(2020)
https://doi.org/10.1038/s41586-020-2603-3
439 S. Pirandola,, S. Mancini,, D. Vitali,, P. Tombesi,: Constructing finite-dimensional codes with optical continuous variables. Europhys. Lett. 68, 323(2004)
https://doi.org/10.1209/epl/i2004-10203-9
440 S. Pirandola,, S. Mancini,, D. Vitali,, P. Tombesi,: Continuous variable encoding by ponderomotive interaction. Eur. Phys. J. D-Atomic Mol. Opt. Plasma. Phys. 37, 283(2006)
https://doi.org/10.1140/epjd/e2005-00306-3
441 S. Pirandola,, S. Mancini,, D. Vitali,, P. Tombesi,: Generating continuous variable quantum codewords in the near-field atomic lithography. J. Phys. B: At. Mol. Opt. Phys. 39, 997(2006)
https://doi.org/10.1088/0953-4075/39/4/023
442 M. Eaton,, R. Nehra,, O. Pfister,: Non-Gaussian and Gottesman- Kitaev-Preskill state preparation by photon catalysis. New J. Phys. 21, 113034(2019)
https://doi.org/10.1088/1367-2630/ab5330
443 D. Su,, C.R. Myers,, K.K. Sabapathy,: Conversion of gaussian states to non-gaussian states using photon-number-resolving detectors. Phys. Rev. A 100, 052301(2019)
https://doi.org/10.1103/PhysRevA.100.052301
444 J.M. Arrazola,, T.R. Bromley,, J. Izaac,, C.R. Myers,, K. Brádler,, N. Killoran,: Machine learning method for state preparation and gate synthesis on photonic quantum computers. Quantum Sci. Technol. 4, 024004(2019)
https://doi.org/10.1088/2058-9565/aaf59e
445 I. Tzitrin,, J.E. Bourassa,, N.C. Menicucci,, K.K. Sabapathy,: Progress towards practical qubit computation using approximate Gottesman-Kitaev-Preskill codes. Phys. Rev. A 101, 032315(2020)
https://doi.org/10.1103/PhysRevA.101.032315
446 C.Y. Lin,, W.C. Su,, S.T. Wu,: Encoding qubits into harmonicoscillator modes via quantum walks in phase space. Quantum Inf. Process. 19, 1(2020)
https://doi.org/10.1007/s11128-020-02775-6
447 J. Hastrup,, U. L. Andersen,: Generation of optical Gottesman-Kitaev-Preskil states with cavity QED. arXiv preprint arXiv: 2104.07981(2021)
448 K. Fukui,, M. Endo,, W. Asavanant,, A. Sakaguchi,, J. Yoshikawa,, A. Furusawa,: Generating the gottesman-kitaevpreskill qubit using a cross-kerr interaction between squeezed light and fock states in optics. Phys. Rev. A 105, 022436(2022)
https://doi.org/10.1103/PhysRevA.105.022436
449 K. Fukui,, N. C. Menicucci,: An efficient, concatenated, bosonic code for additive gaussian noise. arXiv preprint arXiv: 2102.01374(2021)
450 K. Takase,, K. Fukui,, A. Kawasaki,, W. Asavanant,, M. Endo,, J. Yoshikawa,, P. van Loock,, A. Furusawa,: Gaussian breeding for encoding a qubit in propagating light. arXiv preprint arXiv: 2212.05436(2022)
451 K. Fukui,: High-threshold fault-tolerant quantum computation with the Gottesman-Kitaev-Preskill qubit under noise in an optical setup. Phys. Rev. A 107, 052414(2023)
https://doi.org/10.1103/PhysRevA.107.052414
452 C. Fluhmann,, J.P. Home,: Direct characteristic-function tomography of quantum states of the trapped-ion motional oscillator. Phys. Rev. Lett. 125, 043602(2020)
https://doi.org/10.1103/PhysRevLett.125.043602
453 B. de Neeve,, T. L. Nguyen,, T. Behrle,, J. Home,: Error correction of a logical grid state qubit by dissipative pumping. arXiv preprint arXiv: 2010.09681 [quant-ph] (2020)
454 C. Larsen, M. V., Chamberland,, K. Noh,, J. S. Neergaard-Nielsen,, U. L. Andersen,: A fault-tolerant continuous-variable measurement-based quantum computation architecture. arXiv preprint arXiv: 2101.03014(2021)
455 X. Xue,, B. D’Anjou,, T.F. Watson,, D.R. Ward,, D.E. Savage,, M.G. Lagally,, M. Friesen,, S.N. Coppersmith,, M.A. Eriksson,, W.A. Coish,, L.M.K. Vandersypen,: Repetitive quantum nondemolition measurement and soft decoding of a silicon spin qubit. Phys. Rev. X 10, 021006(2020)
https://doi.org/10.1103/PhysRevX.10.021006
456 B. D’Anjou,: Generalized figure of merit for qubit read-out. Phys. Rev. A 103, 042404(2021)
https://doi.org/10.1103/PhysRevA.103.042404
457 I. Aharonovich,, D. Englund,, M. Toth,: Solid-state single-photon emitters. Nat. Photon. 10(10), 631–641 (2016)
https://doi.org/10.1038/nphoton.2016.186
458 E. Meyer-Scott,, C. Silberhorn,, A. Migdall,: Single-photon sources: approaching the ideal through multiplexing. Rev. Sci. Instrum. 91, 041101(2020)
https://doi.org/10.1063/5.0003320
459 S. Thomas,, P. Senellart,: The race for the ideal single-photon source is on. Nat. Nanotechnol. 16, 367–368 (2021)
https://doi.org/10.1038/s41565-021-00851-1
460 L. Mandel,, E. Wolf,: Optical Coherence and Quantum Optics. Cambridge University Press (1995)
461 G. Grynberg,, A. Aspect,, C. Fabre,: Introduction to Quantum Optics. Cambridge University Press (2010)
462 M. Mansuripur,, E.M. Wright,: Fundamental properties of beamsplitters in classical and quantum optics. Am. J. Phys. 91, 298–306(2023)
https://doi.org/10.1119/5.0102760
463 R. Soref,, B. Bennett,: Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987)
https://doi.org/10.1109/JQE.1987.1073206
464 M. Nedeljkovic,, R. Soref,, G.Z. Mashanovich,: Free-carrier electrorefraction and electroabsorption modulation predictions for silicon over the 1–14-µm infrared wavelength range. IEEE Photon. J. 3, 1171–1180 (2011)
https://doi.org/10.1109/JPHOT.2011.2171930
465 S. Liu,, J. Feng,, Y. Tian,, H. Zhao,, L. Jin,, B. Ouyang,, J. Zhu,, J. Guo,: Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review. Front. Optoelectron. 15, 9(2022)
https://doi.org/10.1007/s12200-022-00012-9
466 K. Wu,, C. Guo,, H. Wang,, X. Zhang,, J. Wang,, J. Chen,: All-optical phase shifter and switch near 1550 nm using tungsten disulfide (WS2) deposited tapered fiber. Opt. Express 25, 17639–17649(2017)
https://doi.org/10.1364/OE.25.017639
467 V.R. Supradeepa,, C.M. Long,, R. Wu,, F. Ferdous,, E. Hamidi,, D.E. Leaird,, A.M. Weiner,: Comb-based radiofrequency photonic filters with rapid tunability and high selectivity. Nat. Photon. 6, 186–194 (2012)
https://doi.org/10.1038/nphoton.2011.350
468 D. Marpaung,, J. Yao,, J. Capmany,: Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019)
https://doi.org/10.1038/s41566-018-0310-5
469 J.S. Fandiño,, P. Muñoz,, D. Doménech,, J. Capmany,: A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2016)
https://doi.org/10.1038/nphoton.2016.233
470 B.J. Eggleton,, C.G. Poulton,, P.T. Rakich,, M.J. Steel,, G. Bahl,: Brillouin integrated photonics. Nat. Photon. 13, 664–677 (2019)
https://doi.org/10.1038/s41566-019-0498-z
471 M. Greiner,, O. Mandel,, T. Esslinger,, T.W. Hänsch,, I. Bloch,: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002)
https://doi.org/10.1038/415039a
472 J. Hu,, A. Urvoy,, Z. Vendeiro,, V. Crépel,, W. Chen,, V. Vuletić,: Creation of a Bose-condensed gas of 87Rb by laser cooling. Science 358, 1078–1080 (2017)
https://doi.org/10.1126/science.aan5614
473 S.J.B. Yoo,: Wavelength conversion technologies for WDM network applications. J. Light. Technol. 14, 955–966 (1996)
https://doi.org/10.1109/50.511595
474 J.M. Lukens,, H.H. Lu,, B. Qi,, P. Lougovski,, A.M. Weiner,, & B.P. Williams,: All-optical frequency processor for networking applications. J. Light. Technol. 38, 1678–1687 (2020)
https://doi.org/10.1109/JLT.2019.2953363
475 T. Mueller,, F. Xia,, P. Avouris,: Graphene photodetectors for high-speed optical communications. Nat. Photon. 4(5), 297–301 (2010)
https://doi.org/10.1038/nphoton.2010.40
476 G. Li,, Y. Wang,, L. Huang,, W. Sun,: Research progress of high-sensitivity perovskite photodetectors: a review of photodetectors: noise, structure, and materials. ACS Appl. Electron. Mater. 4(4), 1485–1505 (2022)
https://doi.org/10.1021/acsaelm.1c01349
477 G. Konstantatos,: Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun. 9, 5266(2018)
https://doi.org/10.1038/s41467-018-07643-7
478 P. Peumans,, V. Bulovic,, S.R. Forrest,: Efficient, high-bandwidth organic multilayer photodetectors. Appl. Phys. Lett. 76, 3855–3857(2000)
https://doi.org/10.1063/1.126800
479 K.J. Baeg,, M. Binda,, D. Natali,, M. Caironi,, Y.Y. Noh,: Organic light detectors: photodiodes and phototransistors. Adv. Mater. 25, 4267–95 (2013)
https://doi.org/10.1002/adma.201204979
480 A.W. Sarto,, B.J. Van Zeghbroeck,: Photocurrents in a metalsemiconductor- metal photodetector. IEEE J. Quantum Electron. 33(12), 2188–2194 (1997)
https://doi.org/10.1109/3.644100
481 T. Yang,, C. Shou,, L. Xu,, J. Tran,, Y. He,, Y. Li,, P. Wei,, J. Liu,: Metal-semiconductor-metal photodetectors based on β−MgGaO thin films. ACS Appl. Electron. Mater. 5(4), 2122–2130 (2023)
https://doi.org/10.1021/acsaelm.3c00035
482 S.V. Averin,, V.M. Kotov,: High spectral selectivity metal-sem-iconductor-metal photodetector. Opt. Quant. Electron. 55, 37(2023)
https://doi.org/10.1007/s11082-022-04085-w
483 H. Yoo,, I.S. Lee,, S. Jung,, S.M. Rho,, B.H. Kang,, H.J. Kim,: A review of phototransistors using metal oxide semiconductors: research progress and future directions. Adv. Mater. 33(47), 2006091(2021)
https://doi.org/10.1002/adma.202006091
484 A.M. Glover,: A review of the development of sensitive phototubes. Proc. IRE 29(8), 413–423 (1941)
https://doi.org/10.1109/JRPROC.1941.230984
485 A. Ekert,: Quantum interferometers as quantum computers. Phys. Scr. 1998, 218(1998)
https://doi.org/10.1238/Physica.Topical.076a00218
486 N. Spagnolo,, L. Aparo,, C. Vitelli,, A. Crespi,, R. Ramponi,, R. Osellame,, P. Mataloni,, F. Sciarrino,: Quantum interferometry with three-dimensional geometry. Sci. Rep. 2, 862(2012)
https://doi.org/10.1038/srep00862
487 S.H. Tan,, P.P. Rohde,: The resurgence of the linear optics quantum interferometer—recent advances and applications. Rev. Phys. 4, 100030(2019)
https://doi.org/10.1016/j.revip.2019.100030
488 Y. Chen,, L. Hong,, L. Chen,: Quantum interferometric metrology with entangled photons. Front. Phys. 10, 892519(2022)
https://doi.org/10.3389/fphy.2022.892519
489 R.B. Priti,, O. Liboiron-Ladouceur,: A broadband rearrangeable nonblocking MZI-based thermo-optic O-band switch in the silicon-on-insulator. In: Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS). Optical Society of America, PM4D-2(2017)
https://doi.org/10.1364/PS.2017.PM4D.2
490 F. Horst,, W.M. Green,, S. Assefa,, S.M. Shank,, Y.A. Vlasov,, B.J. Offrein,: Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. Opt. Express 21(10), 11652–11658 (2013)
https://doi.org/10.1364/OE.21.011652
491 L. Zhuang,, C. Zhu,, Y. Xie,, M. Burla,, C.G.H. Roeloffzen,, M. Hoekman,, B. Corcoran,, A.J. Lowery,: Nyquist-filtering (de) multiplexer using ring resonator assisted interferometer circuit. J. Lightwave Technol. 34(8), 1732–1738 (2016)
https://doi.org/10.1109/JLT.2015.2502251
492 M. Rivai,, T.A. Sardjono,, D. Purwanto,: Investigation of michelson interferometer for volatile organic compound sensor. J. Phys. Conf. Ser. 853, 012017(2017)
https://doi.org/10.1088/1742-6596/853/1/012017
493 K. Shiokawa,, Y. Otsuka,, S. Oyama,, S. Nozawa,, M. Satoh,, Y. Katoh,, Y. Hamaguchi,, Y. Yamamoto,, J. Meriwether,: Development of low-cost sky-scanning Fabry-Perot interferometers for airglow and auroral studies. Earth Planet Space 64, 1033–1046 (2012)
https://doi.org/10.5047/eps.2012.05.004
494 P. Zhang,, M. Tang,, F. Gao,, B. Zhu,, Z. Zhao,, L. Duan,, S. Fu,, J. Ouyang,, H. Wei,, P.P. Shum, D. Liu,: Simplified hollow-core fiber-based fabry-perot interferometer with modified vernier effect for highly sensitive high-temperature measurement. IEEE Photon. J. 7, 1–10 (2017)
495 C. Wang,, J. Sun,, C. Yang,, B. Kuang,, D. Fang,, A. Asundi,: Research on a novel Fabry-Perot interferometer model based on the ultra-small gradient-index fiber probe. Sensors 19, 1538(2019)
https://doi.org/10.3390/s19071538
496 J. Kuhn,, N. Bobrowski,, G. Boudoire,, S. Calabrese,, G. Giuffrida,, M. Liuzzo,, K. Karume,, D. Tedesco,, T. Wagner,, U. Platt,: High-spectral-resolution Fabry-Pérot interferometers overcome fundamental limitations of present volcanic gas remote sensing techniques. Front. Earth Sci. 11, 1039093(2023)
https://doi.org/10.3389/feart.2023.1039093
497 S. Karimeddiny,, T.M.J. Cham,, O. Smedley,, D.C. Ralph,, Y.K. Luo,: Sagnac interferometry for high-sensitivity optical measurements of spin-orbit torque. Sci. Adv. 9, eadi9039(2023)
https://doi.org/10.1126/sciadv.adi9039
498 C. Schubert,, S. Abend,, M. Gersemann,, M. Gebbe,, D. Schlippert,, P. Berg,, E.M. Rasel,: Multi-loop atomic Sagnac interferometry. Sci. Rep. 11, 16121(2021)
https://doi.org/10.1038/s41598-021-95334-7
499 B. Barrett,, R. Geiger,, I. Dutta,, M. Meunier,, B. Canuel,, A. Gauguet,, P. Bouyer,, A. Landragin,: The Sagnac effect: 20 years of development in matter-wave interferometry. Comptes Rendus Physique 15(10), 875–883 (2014)
https://doi.org/10.1016/j.crhy.2014.10.009
500 A.B. Vakhtin,, D.J. Kane,, W.R. Wood,, K.A. Peterson,: Common-path interferometer for frequency-domain optical coherence tomography. Appl. Opt. 42, 6953–6958 (2003)
https://doi.org/10.1364/AO.42.006953
501 I. Barth,, D. Conteduca,, C. Reardon,, S. Johnson,, T.F. Krauss,: Common-path interferometric label-free protein sensing with resonant dielectric nanostructures. Light Sci. Appl. 9, 96(2020)
https://doi.org/10.1038/s41377-020-0336-6
502 Y.J. Rao,, D.A. Jackson,: Principles of fiber-optic interferometry. In: Grattan, K.T.V., Meggitt, B.T. (eds.) Optical fiber sensor technology. Springer, Boston (2000)
503 L. Li,, L. Xia,, Z. Xie,, D. Liu,: All-fiber Mach-Zehnder interferometers for sensing applications. Opt. Express 20, 11109–11120 (2012)
https://doi.org/10.1364/OE.20.011109
504 L.A. Rozema,, C. Wang,, D.H. Mahler,, A. Hayat,, A.M. Steinberg,, J.E. Sipe,, M. Liscidini,: Characterizing an entangled-photon source with classical detectors and measurements. Optica 2, 430–433 (2015)
https://doi.org/10.1364/OPTICA.2.000430
505 Y. Li,: Methods of generating entangled photon pairs. J. Phys. Conf. Ser. 1634, 012172(2020)
https://doi.org/10.1088/1742-6596/1634/1/012172
506 Q. Ruihong,, M. Ying,: Research progress of quantum repeaters. J. Phys. Conf. Ser. 1237, 052032(2019)
https://doi.org/10.1088/1742-6596/1237/5/052032
507 L. Kamin,, E. Shchukin,, F. Schmidt,, P. van Loock,: Exact rate analysis for quantum repeaters with imperfect memories and entanglement swapping as soon as possible. Phys. Rev. Res. 5, 023086(2023)
https://doi.org/10.1103/PhysRevResearch.5.023086
508 D. Palima,, A.R. Bañas,, G. Vizsnyiczai,, L. Kelemen,, P. Ormos,, J. Glückstad,: Wave-guided optical waveguides. Opt. Express 20(3), 2004–2014 (2012)
https://doi.org/10.1364/OE.20.002004
509 L. Wu,: Ultrathin waveguides for 2D photonic integrated circuits. Nat. Rev. Phys. 5, 634(2023)
https://doi.org/10.1038/s42254-023-00657-1
510 M. Lee,, H. Hong,, J. Yu,, F. Mujid,, A. Ye,, C. Liang,, J. Park,: Wafer-scale δ waveguides for integrated two-dimensional photonics. Science 381, 648–653 (2023)
https://doi.org/10.1126/science.adi2322
511 A.I. Lvovsky,: Squeezed light, photonics: scientific foundations. Technol. Appl. 1, 121(2015)
https://doi.org/10.1002/9781119009719.ch5
512 M. Tse,, H. Yu,, N. Kijbunchoo,, A. Fernandez-Galiana,, P. Dupej,, L. Barsotti,, C.D. Blair,, D.D. Brown,, S.E. Dwyer,, A. Effler,, M. Evans,, P. Fritschel,, V.V. Frolov,, A.C. Green,, G.L. Mansell,, F. Matichard,, N. Mavalvala,, D.E. McClelland,, L. McCuller,, T. McRae,, J. Miller,, A. Mullavey,, E. Oelker,, I.Y. Phinney,, D. Sigg,, B.J.J. Slagmolen,, T. Vo,, R.L. Ward,, C. Whittle,, R. Abbott,, C. Adams,, R.X. Adhikari,, A. Ananyeva,, S. Appert,, K. Arai,, J.S. Areeda,, Y. Asali,, S.M. Aston,, C. Austin,, A.M. Baer,, M. Ball,, S.W. Ballmer,, S. Banagiri,, D. Barker,, J. Bartlett,, B.K. Berger,, J. Betzwieser,, D. Bhattacharjee,, G. Billingsley,, S. Biscans,, R.M. Blair,, N. Bode,, P. Booker,, R. Bork,, A. Bramley,, A.F. Brooks,, A. Buikema,, C. Cahillane,, K.C. Cannon,, X. Chen,, A.A. Ciobanu,, F. Clara,, S.J. Cooper,, K.R. Corley,, S.T. Countryman,, P.B. Covas,, D.C. Coyne,, L.E.H. Datrier,, D. Davis,, C. Di Fronzo,, J.C. Driggers,, T. Etzel,, T.M. Evans,, J. Feicht,, P. Fulda,, M. Fyffe,, J.A. Giaime,, K.D. Giardina,, P. Godwin,, E. Goetz,, S. Gras,, C. Gray,, R. Gray,, A. Gupta,, E.K. Gustafson,, R. Gustafson,, J. Hanks,, J. Hanson,, T. Hardwick,, R.K. Hasskew,, M.C. Heintze,, A.F. Helmling-Cornell,, N.A. Holland,, J.D. Jones,, S. Kandhasamy,, S. Karki,, M. Kasprzack,, K. Kawabe,, P.J. King,, J.S. Kissel,, R. Kumar,, M. Landry,, B.B. Lane,, B. Lantz,, M. Laxen,, Y.K. Lecoeuche,, J. Leviton,, J. Liu,, M. Lormand,, A.P. Lundgren,, R. Macas,, M. MacInnis,, D.M. Macleod,, S. Márka,, Z. Márka,, D.V. Martynov,, K. Mason,, T.J. Massinger,, R. McCarthy,, S. McCormick,, J. McIver,, G. Mendell,, K. Merfeld,, E.L. Merilh,, F. Meylahn,, T. Mistry,, R. Mittleman,, G. Moreno,, C.M. Mow-Lowry,, S. Mozzon,, T.J.N. Nelson,, P. Nguyen,, L.K. Nuttall,, J. Oberling,, R.J. Oram,, B. O’Reilly,, C. Osthelder,, D.J. Ottaway,, H. Overmier,, J.R. Palamos,, W. Parker,, E. Payne,, A. Pele,, C.J. Perez,, M. Pirello,, H. Radkins,, K.E. Ramirez,, J.W. Richardson,, K. Riles,, N.A. Robertson,, J.G. Rollins,, C.L. Romel,, J.H. Romie,, M.P. Ross,, K. Ryan,, T. Sadecki,, E.J. Sanchez,, L.E. Sanchez,, T.R. Saravanan,, R.L. Savage,, D. Schaetzl,, R. Schnabel,, R.M.S. Schofield,, E. Schwartz,, D. Sellers,, T.J. Shaffer,, J.R. Smith,, S. Soni,, B. Sorazu,, A.P. Spencer,, K.A. Strain,, L. Sun,, M.J. Szczepańczyk,, M. Thomas,, P. Thomas,, K.A. Thorne,, K. Toland,, C.I. Torrie,, G. Traylor,, A.L. Urban,, G. Vajente,, G. Valdes,, D.C. Vander-Hyde,, P.J. Veitch,, K. Venkateswara,, G. Venugopalan,, A.D. Viets,, C. Vorvick,, M. Wade,, J. Warner,, B. Weaver,, R. Weiss,, B. Willke,, C.C. Wipf,, L. Xiao,, H. Yamamoto,, M.J. Yap,, H. Yu,, L. Zhang,, M.E. Zucker,, J. Zweizig,: Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107(2019)
https://doi.org/10.1103/PhysRevLett.123.231107
513 J. Huh,, G.G. Guerreschi,, B. Peropadre,, J.R. McClean,, A. Aspuru-Guzik,: Boson sampling for molecular vibronic spectra. Nat. Photon. 9, 615(2015)
https://doi.org/10.1038/nphoton.2015.153
514 J.M. Arrazola,, T.R. Bromley,: Using Gaussian boson sampling to find dense subgraphs. Phys. Rev. Lett. 121, 030503(2018)
https://doi.org/10.1103/PhysRevLett.121.030503
515 A. Otterpohl,, F. Sedlmeir,, U. Vogl,, T. Dirmeier,, G. Shafiee,, G. Schunk,, D.V. Strekalov,, H.G.L. Schwefel,, T. Gehring,, U.L. Andersen,, G. Leuchs,, C. Marquardt,: Squeezed vacuum states from a whispering gallery mode resonator. Optica 6, 1375(2019)
https://doi.org/10.1364/OPTICA.6.001375
516 M.E. Anderson,, M. Beck,, M. Raymer,, J. Bierlein,: Quadrature squeezing with ultrashort pulses in nonlinear-optical waveguides. Opt. Lett. 20, 620(1995)
https://doi.org/10.1364/OL.20.000620
517 F. Mondain,, T. Lunghi,, A. Zavatta,, E. Gouzien,, F. Doutre,, M. De Micheli,, S. Tanzilli,, V. D’Auria,: Chip-based squeezing at a telecom wavelength. Photon. Res. 7, A36(2019)
https://doi.org/10.1364/PRJ.7.000A36
518 A. Dutt,, K. Luke,, S. Manipatruni,, A.L. Gaeta,, P. Nussenzveig,, M. Lipson,: On-chip optical squeezing. Phys. Rev. Appl. 3, 044005(2015)
https://doi.org/10.1103/PhysRevApplied.3.044005
519 A. Dutt,, S. Miller,, K. Luke,, J. Cardenas,, A.L. Gaeta,, P. Nussenzveig,, M. Lipson,: Tunable squeezing using coupled ring resonators on a silicon nitride chip. Opt. Lett. 41, 223(2016)
https://doi.org/10.1364/OL.41.000223
520 V.D. Vaidya,, B. Morrison,, L.G. Helt,, R. Shahrokshahi,, D.H. Mahler,, M.J. Collins,, K. Tan,, J. Lavoie,, A. Repingon,, M. Menotti,, N. Quesada,, R.C. Pooser,, A.E. Lita,, T. Gerrits,, S.W. Nam,, Z. Vernon,: Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device. Sci. Adv. 6, eaba9186(2020)
https://doi.org/10.1126/sciadv.aba9186
521 A.H. Safavi-Naeini,, S. Gröblacher,, J.T. Hill,, J. Chan,, M. Aspelmeyer,, O. Painter,: Squeezed light from a silicon micromechanical resonator. Nature 500, 185(2013)
https://doi.org/10.1038/nature12307
522 R. Cernansky,, A. Politi,: Nanophotonic source of quadrature squeezing via self-phase modulation. APL Photon. 5, 101303(2020)
https://doi.org/10.1063/5.0024341
523 G. Huang,, E. Lucas,, J. Liu,, A.S. Raja,, G. Lihachev,, M.L. Gorodetsky,, N.J. Engelsen,, T.J. Kippenberg,: Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801(2019)
https://doi.org/10.1103/PhysRevA.99.061801
524 Y. Guo,, W. Zhang,, S. Dong,, Y. Huang,, J. Peng,: Telecom-band degenerate-frequency photon pair generation in silicon microring cavities. Opt. Lett. 39, 2526(2014)
https://doi.org/10.1364/OL.39.002526
525 Z. Vernon,, N. Quesada,, M. Liscidini,, B. Morrison,, M. Menotti,, K. Tan,, J.E. Sipe,: Scalable squeezed-light source for continuous- variable quantum sampling. Phys. Rev. Appl. 12, 064024(2019)
https://doi.org/10.1103/PhysRevApplied.12.064024
526 S. Ast,, M. Mehmet,, R. Schnabel,: High-bandwidth squeezed light at 1550 nm from a compact monolithic ppktp cavity. Opt. Express 21, 13572(2013)
https://doi.org/10.1364/OE.21.013572
527 L.G. Helt,, A.M. Brańczyk,, M. Liscidini,, M.J. Steel,: Parasitic photon-pair suppression via photonic stop-band engineering. Phys. Rev. Lett. 118, 073603(2017)
https://doi.org/10.1103/PhysRevLett.118.073603
528 S. Azzini,, D. Grassani,, M.J. Strain,, M. Sorel,, L.G. Helt,, J.E. Sipe,, M. Liscidini,, M. Galli,, D. Bajoni,: Ultra-low power generation of twin photons in a compact silicon ring resonator. Opt. Express 20, 23100(2012)
https://doi.org/10.1364/OE.20.023100
529 I. Agha,, M. Davanço,, B. Thurston,, K. Srinivasan,: Low-noise chip-based frequency conversion by four-wave-mixing bragg scattering in SiNx waveguides. Opt. Lett. 37, 2997(2012)
https://doi.org/10.1364/OL.37.002997
530 Y. Zhao,, Y. Okawachi,, J.K. Jang,, X. Ji,, M. Lipson,, A.L. Gaeta,: Near-degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip. Phys. Rev. Lett. 124, 193601(2020)
https://doi.org/10.1103/PhysRevLett.124.193601
531 C.M. Caves,: Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981)
https://doi.org/10.1103/PhysRevD.23.1693
532 C.M. Caves,: Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett. 45, 75–79 (1980)
https://doi.org/10.1103/PhysRevLett.45.75
533 C. Gerry,, P. Knight,, P.L. Knight,: Introductory Quantum Optics. Cambridge University Press (2005)
534 H.J. Kimble,, Y. Levin,, A.B. Matsko,, K.S. Thorne,, S.P. Vyatchanin,: Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002(2001)
https://doi.org/10.1103/PhysRevD.65.022002
535 J. Aasi,, J. Abadie,, B. Abbott,, R. Abbott,, T.D. Abbott,, M.R. Abernathy,, C. Adams,, T. Adams,, P. Addesso,, R.X. Adhikari,, C. Affeldt,, O.D. Aguiar,, P. Ajith,, B. Allen,, E. Amador Ceron,, D. Amariutei,, S.B. Anderson,, W.G. Anderson,, K. Arai,, M.C. Araya,, C. Arceneaux,, S. Ast,, S.M. Aston,, D. Atkinson,, P. Aufmuth,, C. Aulbert,, L. Austin,, B.E. Aylott,, S. Babak,, P.T. Baker,, S. Ballmer,, Y. Bao,, J.C. Barayoga,, D. Barker,, B. Barr,, L. Barsotti,, M.A. Barton,, I. Bartos,, R. Bassiri,, J. Batch,, J. Bauchrowitz,, B. Behnke,, A.S. Bell,, C. Bell,, G. Bergmann,, J.M. Berliner,, A. Bertolini,, J. Betzwieser,, N. Beveridge,, P.T. Beyersdorf,, T. Bhadbhade,, I.A. Bilenko,, G. Billingsley,, J. Birch,, S. Biscans,, E. Black,, J.K. Blackburn,, L. Blackburn,, D. Blair,, B. Bland,, O. Bock,, T.P. Bodiya,, C. Bogan,, C. Bond,, R. Bork,, M. Born,, S. Bose,, J. Bowers,, P.R. Brady,, V.B. Braginsky,, J.E. Brau,, J. Breyer,, D.O. Bridges,, M. Brinkmann,, M. Britzger,, A.F. Brooks,, D.A. Brown,, D.D. Brown,, K. Buckland,, F. Brückner,, B.C. Buchler,, A. Buonanno,, J. Burguet-Castell,, R.L. Byer,, L. Cadonati,, J.B. Camp,, P. Campsie,, K. Cannon,, J. Cao,, C.D. Capano,, L. Carbone,, S. Caride,, A.D. Castiglia,, S. Caudill,, C. Cavaglià, M., Cepeda,, T. Chalermsongsak,, S. Chao,, P. Charlton,, X. Chen,, Y. Chen,, H.S. Cho,, J.H. Chow,, N. Christensen,, Q. Chu,, S.S.Y. Chua,, C.T.Y. Chung,, G. Ciani,, F. Clara,, D.E. Clark,, J.A. Clark,, M. Constancio Junior,, D. Cook,, T.R. Corbitt,, M. Cordier,, N. Cornish,, A. Corsi,, C.A. Costa,, M.W. Coughlin,, S. Countryman,, P. Couvares,, D.M. Coward,, M. Cowart,, D.C. Coyne,, K. Craig,, J.D.E. Creighton,, T.D. Creighton,, A. Cumming,, L. Cunningham,, K. Dahl,, M. Damjanic,, S.L. Danilishin,, K. Danzmann,, B. Daudert,, H. Daveloza,, G.S. Davies,, E.J. Daw,, T. Dayanga,, E. Deleeuw,, T. Denker,, T. Dent,, V. Dergachev,, R. DeRosa,, R. DeSalvo,, S. Dhurandhar,, I. Di Palma,, M. Díaz,, A. Dietz,, F. Donovan,, K.L. Dooley,, S. Doravari,, S. Drasco,, R.W.P. Drever,, J.C. Driggers,, Z. Du,, J.C. Dumas,, S. Dwyer,, T. Eberle,, M. Edwards,, A. Effler,, P. Ehrens,, S.S. Eikenberry,, R. Engel,, R. Essick,, T. Etzel,, K. Evans,, M. Evans,, T. Evans,, M. Factourovich,, S. Fairhurst,, Q. Fang,, B.F. Farr,, W. Farr,, M. Favata,, D. Fazi,, H. Fehrmann,, D. Feldbaum,, L.S. Finn,, R.P. Fisher,, S. Foley,, E. Forsi,, N. Fotopoulos,, M. Frede,, M.A. Frei,, Z. Frei,, A. Freise,, R. Frey,, T.T. Fricke,, D. Friedrich,, P. Fritschel,, V.V. Frolov,, M.K. Fujimoto,, P.J. Fulda,, M. Fyffe,, J. Gair,, J. Garcia,, N. Gehrels,, G. Gelencser,, L.Á. Gergely,, S. Ghosh,, J.A. Giaime,, S. Giampanis,, K.D. Giardina,, S. Gil-Casanova,, C. Gill,, J. Gleason,, E. Goetz,, G. González,, N. Gordon,, M.L. Gorodetsky,, S. Gossan,, S. Goßler,, C. Graef,, P.B. Graff,, A. Grant,, S. Gras,, C. Gray,, R.J.S. Greenhalgh,, A.M. Gretarsson,, C. Griffo,, H. Grote,, K. Grover,, S. Grunewald,, C. Guido,, E.K. Gustafson,, R. Gustafson,, D. Hammer,, G. Hammond,, J. Hanks,, C. Hanna,, J. Hanson,, K. Haris,, J. Harms,, G.M. Harry,, I.W. Harry,, E.D. Harstad,, M.T. Hartman,, K. Haughian,, K. Hayama,, J. Heefner,, M.C. Heintze,, M.A. Hendry,, I.S. Heng,, A.W. Heptonstall,, M. Heurs,, M. Hewitson,, S. Hild,, D. Hoak,, K.A. Hodge,, K. Holt,, M. Holtrop,, T. Hong,, S. Hooper,, J. Hough,, E.J. Howell,, V. Huang,, E.A. Huerta,, B. Hughey,, S.H. Huttner,, M. Huynh,, T. Huynh-Dinh,, D.R. Ingram,, R. Inta,, T. Isogai,, A. Ivanov,, B.R. Iyer,, K. Izumi,, M. Jacobson,, E. James,, H. Jang,, Y.J. Jang,, E. Jesse,, W.W. Johnson,, D. Jones,, D.I. Jones,, R. Jones,, L. Ju,, P. Kalmus,, V. Kalogera,, S. Kandhasamy,, G. Kang,, J.B. Kanner,, R. Kasturi,, E. Katsavounidis,, W. Katzman,, H. Kaufer,, K. Kawabe,, S. Kawamura,, F. Kawazoe,, D. Keitel,, D.B. Kelley,, W. Kells,, D.G. Keppel,, A. Khalaidovski,, F.Y. Khalili,, E.A. Khazanov,, B.K. Kim,, C. Kim,, K. Kim,, N. Kim,, Y.M. Kim,, P.J. King,, D.L. Kinzel,, J.S. Kissel,, S. Klimenko,, J. Kline,, K. Kokeyama,, V. Kondrashov,, S. Koranda,, W.Z. Korth,, D. Kozak,, C. Kozameh,, A. Kremin,, V. Kringel,, B. Krishnan,, C. Kucharczyk,, G. Kuehn,, P. Kumar,, R. Kumar,, B.J. Kuper,, R. Kurdyumov,, P. Kwee,, P.K. Lam,, M. Landry,, B. Lantz,, P.D. Lasky,, C. Lawrie,, A. Lazzarini,, A. Le Roux,, P. Leaci,, C.H. Lee,, H.K. Lee,, H.M. Lee,, J. Lee,, J.R. Leong,, B. Levine,, V. Lhuillier,, A.C. Lin,, V. Litvine,, Y. Liu,, Z. Liu,, N.A. Lockerbie,, D. Lodhia,, K. Loew,, J. Logue,, A.L. Lombardi,, M. Lormand,, J. Lough,, M. Lubinski,, H. Lück,, A.P. Lundgren,, J. Macarthur,, E. Macdonald,, B. Machenschalk,, M. MacInnis,, D.M. Macleod,, F. Magaña-Sandoval,, M. Mageswaran,, K. Mailand,, G. Manca,, I. Mandel,, V. Mandic,, S. Márka,, Z. Márka,, A.S. Markosyan,, E. Maros,, I.W. Martin,, R.M. Martin,, D. Martinov,, J.N. Marx,, K. Mason,, F. Matichard,, L. Matone,, R.A. Matzner,, N. Mavalvala,, G. May,, G. Mazzolo,, K. McAuley,, R. McCarthy,, D.E. McClelland,, S.C. McGuire,, G. McIntyre,, J. McIver,, G.D. Meadors,, M. Mehmet,, T. Meier,, A. Melatos,, G. Mendell,, R.A. Mercer,, S. Meshkov,, C. Messenger,, M.S. Meyer,, H. Miao,, J. Miller,, C.M.F. Mingarelli,, S. Mitra,, V.P. Mitrofanov,, G. Mitselmakher,, R. Mittleman,, B. Moe,, F. Mokler,, S.R.P. Mohapatra,, D. Moraru,, G. Moreno,, T. Mori,, S.R. Morriss,, K. Mossavi,, C.M. Mow-Lowry,, C.L. Mueller,, G. Mueller,, S. Mukherjee,, A. Mullavey,, J. Munch,, D. Murphy,, P.G. Murray,, A. Mytidis,, D. Nanda Kumar,, T. Nash,, R. Nayak,, V. Necula,, G. Newton,, T. Nguyen,, E. Nishida,, A. Nishizawa,, A. Nitz,, D. Nolting,, M.E. Normandin,, L.K. Nuttall,, J. O’Dell,, B. O’Reilly,, R. O’Shaughnessy,, E. Ochsner,, E. Oelker,, G.H. Ogin,, J.J. Oh,, S.H. Oh,, F. Ohme,, P. Oppermann,, C. Osthelder,, C.D. Ott,, D.J. Ottaway,, R.S. Ottens,, J. Ou,, H. Overmier,, B.J. Owen,, C. Padilla,, A. Pai,, Y. Pan,, C. Pankow,, M.A. Papa,, H. Paris,, W. Parkinson,, M. Pedraza,, S. Penn,, C. Peralta,, A. Perreca,, M. Phelps,, M. Pickenpack,, V. Pierro,, I.M. Pinto,, M. Pitkin,, H.J. Pletsch,, J. Pöld,, F. Postiglione,, C. Poux,, V. Predoi,, T. Prestegard,, L.R. Price,, M. Prijatelj,, S. Privitera,, L.G. Prokhorov,, O. Puncken,, V. Quetschke,, E. Quintero,, R. Quitzow-James,, F.J. Raab,, H. Radkins,, P. Raffai,, S. Raja,, M. Rakhmanov,, C. Ramet,, V. Raymond,, C.M. Reed,, T. Reed,, S. Reid,, D.H. Reitze,, R. Riesen,, K. Riles,, M. Roberts,, N.A. Robertson,, E.L. Robinson,, S. Roddy,, C. Rodriguez,, L. Rodriguez,, M. Rodruck,, J.G. Rollins,, J.H. Romie,, C. Röver,, S. Rowan,, A. Rüdiger,, K. Ryan,, F. Salemi,, L. Sammut,, V. Sandberg,, J. Sanders,, S. Sankar,, V. Sannibale,, L. Santamaría,, I. Santiago-Prieto,, G. Santostasi,, B.S. Sathyaprakash,, P.R. Saulson,, R.L. Savage,, R. Schilling,, R. Schnabel,, R.M.S. Schofield,, D. Schuette,, B. Schulz,, B.F. Schutz,, P. Schwinberg,, J. Scott,, S.M. Scott,, F. Seifert,, D. Sellers,, A.S. Sengupta,, A. Sergeev,, D.A. Shaddock,, M.S. Shahriar,, M. Shaltev,, Z. Shao,, B. Shapiro,, P. Shawhan,, D.H. Shoemaker,, T.L. Sidery,, X. Siemens,, D. Sigg,, D. Simakov,, A. Singer,, L. Singer,, A.M. Sintes,, G.R. Skelton,, B.J.J. Slagmolen,, J. Slutsky,, J.R. Smith,, M.R. Smith,, R.J.E. Smith,, N.D. Smith-Lefebvre,, E.J. Son,, B. Sorazu,, T. Souradeep,, M. Stefszky,, E. Steinert,, J. Steinlechner,, S. Steinlechner,, S. Steplewski,, D. Stevens,, A. Stochino,, R. Stone,, K.A. Strain,, S.E. Strigin,, A.S. Stroeer,, A.L. Stuver,, T.Z. Summerscales,, S. Susmithan,, P.J. Sutton,, G. Szeifert,, D. Talukder,, D.B. Tanner,, S.P. Tarabrin,, R. Taylor,, M. Thomas,, P. Thomas,, K.A. Thorne,, K.S. Thorne,, E. Thrane,, V. Tiwari,, K.V. Tokmakov,, C. Tomlinson,, C.V. Torres,, C.I. Torrie,, G. Traylor,, M. Tse,, D. Ugolini,, C.S. Unnikrishnan,, H. Vahlbruch,, M. Vallisneri,, M.V. van der Sluys,, A.A. van Veggel,, S. Vass,, R. Vaulin,, A. Vecchio,, P.J. Veitch,, J. Veitch,, K. Venkateswara,, S. Verma,, R. Vincent-Finley,, S. Vitale,, T. Vo,, C. Vorvick,, W.D. Vousden,, S.P. Vyatchanin,, A. Wade,, L. Wade,, M. Wade,, S.J. Waldman,, L. Wallace,, Y. Wan,, M. Wang,, J. Wang,, X. Wang,, A. Wanner,, R.L. Ward,, M. Was,, M. Weinert,, A.J. Weinstein,, R. Weiss,, T. Welborn,, L. Wen,, P. Wessels,, M. West,, T. Westphal,, K. Wette,, J.T. Whelan,, S.E. Whitcomb,, A.G. Wiseman,, D.J. White,, B.F. Whiting,, K. Wiesner,, C. Wilkinson,, P.A. Willems,, L. Williams,, R. Williams,, T. Williams,, J.L. Willis,, B. Willke,, M. Wimmer,, L. Winkelmann,, W. Winkler,, C. C. Wipf,, H. Wittel,, G. Woan,, R. Wooley,, J. Worden,, J. Yablon,, I. Yakushin,, H. Yamamoto,, C.C. Yancey,, H. Yang,, D. Yeaton-Massey,, S. Yoshida,, H. Yum,, M. Zanolin,, F. Zhang,, L. Zhang,, C. Zhao,, H. Zhu,, X.J. Zhu,, N. Zotov,, M.E. Zucker,, J. Zweizig,: Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon. 7, 613–619 (2013)
536 H. Grote,, K. Danzmann,, K.L. Dooley,, R. Schnabel,, J. Slutsky,, H. Vahlbruch,: First long-term application of squeezed states of light in a gravitational-wave observatory. Phys. Rev. Lett. 110, 181101(2013)
https://doi.org/10.1103/PhysRevLett.110.181101
537 The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys. 7, 962(2011)
https://doi.org/10.1038/nphys2083
538 K.M. Backes,, D.A. Palken,, S.A. Kenany,, B.M. Brubaker,, S.B. Cahn,, A. Droster,, G.C. Hilton,, S. Ghosh,, H. Jackson,, S.K. Lamoreaux,, A.F. Leder,, K.W. Lehnert,, S.M. Lewis,, M. Malnou,, R.H. Maruyama,, N.M. Rapidis,, M. Simanovskaia,, S. Singh,, D.H. Speller,, I. Urdinaran,, L.R. Vale,, E.C. van Assendelft,, K. van Bibber,, H. Wang,: A quantum enhanced search for dark matter axions. Nature 590, 238–242 (2021)
https://doi.org/10.1038/s41586-021-03226-7
539 N. Aggarwal,, T.J. Cullen,, J. Cripe,, G.D. Cole,, R. Lanza,, A. Libson,, D. Follman,, P. Heu,, T. Corbitt,, N. Mavalvala,: Room-temperature optomechanical squeezing. Nat. Phys. 16, 784–788 (2020)
https://doi.org/10.1038/s41567-020-0877-x
540 J.Y. Qiu,, A. Grimsmo,, K. Peng,, B. Kannan,, B. Lienhard,, Y. Sung,, P. Krantz,, V. Bolkhovsky,, G. Calusine,, D. Kim,, A. Melville,, B. Niedzielski,, J. Yoder,, M. Schwartz,, T. Orlando,, I. Siddiqi,, S. Gustavsson,, K. O’Brien,, W. Oliver,: Broadband squeezed microwaves and amplification with a Josephson travelling-wave parametric amplifier. Nat. Phys. 19, 706–713 (2023)
541 K. Murch,, S. Weber,, K. Beck,, E. Ginossar,, I. Siddiqi,: Reduction of the radiative decay of atomic coherence in squeezed vacuum. Nature 499, 62–65 (2013)
https://doi.org/10.1038/nature12264
542 C. Eichler,, Y. Salathe,, J. Mlynek,, S. Schmidt,, A. Wallraff,: Quantum-limited amplification and entanglement in coupled nonlinear resonators. Phys. Rev. Lett. 113, 110502(2014)
https://doi.org/10.1103/PhysRevLett.113.110502
543 D.W.C. Brooks,, T. Botter,, S. Schreppler,, T.P. Purdy,, N. Brahms,, D.M. Stamper-Kurn,: Non-classical light generated by quantum- noise-driven cavity optomechanics. Nature 488, 476–480 (2012)
https://doi.org/10.1038/nature11325
544 T.P. Purdy,, P.L.L. Yu,, R.W. Peterson,, N.S. Kampel,, C.A. Regal,: Strong optomechanical squeezing of light. Phys. Rev. X 3, 031012(2013)
https://doi.org/10.1103/PhysRevX.3.031012
545 V. Sudhir,, D.J. Wilson,, R. Schilling,, H. Schütz,, S.A. Fedorov,, A.H. Ghadimi,, A. Nunnenkamp,, T.J. Kippenberg,: Appearance and disappearance of quantum correlations in measurementbased feedback control of a mechanical oscillator. Phys. Rev. X 7, 011001(2017)
https://doi.org/10.1103/PhysRevX.7.011001
546 C.F. Ockeloen-Korppi,, E. Damskägg,, G.S. Paraoanu,, F. Massel,, M.A. Sillanpää,: Revealing hidden quantum correlations in an electromechanical measurement. Phys. Rev. Lett. 121, 243601(2018)
https://doi.org/10.1103/PhysRevLett.121.243601
547 S. Barzanjeh,, E.S. Redchenko,, M. Peruzzo,, M. Wulf,, D.P. Lewis,, G. Arnold,, J.M. Fink,: Stationary entangled radiation from micromechanical motion. Nature 570, 480–483 (2019)
https://doi.org/10.1038/s41586-019-1320-2
548 U.L. Andersen,, T. Gehring,, C. Marquardt,, G. Leuchs,: 30 years of squeezed light generation. Phys. Scr. 91, 053001(2016)
https://doi.org/10.1088/0031-8949/91/5/053001
549 J. Arnbak,, C.S. Jacobsen,, R.B. Andrade,, X. Guo,, J.S. Neergaard- Nielsen,, U.L. Andersen,, T. Gehring,: Compact, low-threshold squeezed light source. Opt. Express 27, 37877–37885 (2019)
https://doi.org/10.1364/OE.27.037877
550 L. McCuller,, C. Whittle,, D. Ganapathy,, K. Komori,, M. Tse,, A. Fernandez-Galiana,, L. Barsotti,, P. Fritschel,, M. MacInnis,, F. Matichard,, K. Mason,, N. Mavalvala,, R. Mittleman,, H. Yu,, M.E. Zucker,, M. Evans,: Frequency-dependent squeezing for advanced LIGO. Phys. Rev. Lett. 124, 171102(2020)
https://doi.org/10.1103/PhysRevLett.124.171102
551 C. Darsow-Fromm,, J. Gurs,, R. Schnabel,, S. Steinlechner,: Squeezed light at 2128 nm for future gravitational-wave observatories. Opt. Lett. 46, 5850(2021)
https://doi.org/10.1364/OL.433878
552 R. Schnabel,, A. Schönbeck,: The Squeeze Laser. IEEE Trans. Quantum Eng.: Quantum Sens. Metrol. 3, 3500209(2022)
https://doi.org/10.1109/TQE.2022.3224686
553 B. Abdo,: Broadband squeezer of microwave light. Nat. Phys. 19, 616–617 (2023)
554 J.L. Miller,: Frequency-dependent squeezing makes LIGO even more sensitive. Phys. Today 77(1), 13–16 (2024)
https://doi.org/10.1063/PT.3.5374
555 S.M. Young,, D. Soh,: Fundamental limits to the generation of highly displaced bright squeezed light using linear optics and parametric amplifiers. arXive preprints arXiv: 2311. 08641 [quant-ph] (2023)
556 S. Aaronson,, A. Arkhipov,: The computational complexity of linear optics. In: Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing. pp. 333–342 (2011)
557 J. Barrett,, L. Hardy,, A. Kent,: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503(2005)
https://doi.org/10.1103/PhysRevLett.95.010503
558 R. Raussendorf,, J. Harrington,: Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98, 190504(2007)
https://doi.org/10.1103/PhysRevLett.98.190504
559 G. Andrini,, F. Amanti,, F. Armani,, V. Bellani,, V. Bonaiuto,, S. Cammarata,, M. Campostrini,, T.H. Dao,, F. De Matteis,, V. Demontis,, G. Di Giuseppe,, S. Ditalia Tchernij,, S. Donati,, A. Fontana,, J. Forneris,, R. Francini,, L. Frontini,, R. Gunnella,, S. Iadanza,, A.E. Kaplan,, C. Lacava,, V. Liberali,, F. Marzioni,, E. Nieto Hernández,, E. Pedreschi,, P. Piergentili,, D. Prete,, P. Prosposito,, V. Rigato,, C. Roncolato,, F. Rossella,, A. Salamon,, M. Salvato,, F. Sargeni,, J. Shojaii,, F. Spinella,, A. Stabile,, A. Toncelli,, G. Trucco,, V. Vitali,: Solid-state color centers for single-photon generation. Photonics 11(2), 188(2024)
https://doi.org/10.3390/photonics11020188
560 Y. Wei,, S. Liu,, X. Li,, Y. Yu,, X. Su,, S. Li,, X. Shang,, H. Liu,, H. Hao,, H. Ni,, S. Yu,, Z. Niu,, J. Iles-Smith,, J. Liu,, X. Wang,: Tailoring solid-state single-photon sources with stimulated emissions. Nat. Nanotechnol. 17, 470–476 (2022)
https://doi.org/10.1038/s41565-022-01092-6
561 C. Zhu,, M. Marczak,, L. Feld,, S.C. Boehme,, C. Bernasconi,, A. Moskalenko,, I. Cherniukh,, D. Dirin,, M.I. Bodnarchuk,, M.V. Kovalenko,, G. Rainò,: Room-temperature, highly pure single-photon sources from all-inorganic lead halide perovskite quantum dots. Nano Lett. 22(9), 3751–3760 (2022)
https://doi.org/10.1021/acs.nanolett.2c00756
562 C.K. Hong,, Z.Y. Ou,, L. Mandel,: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59(18), 2044(1987)
https://doi.org/10.1103/PhysRevLett.59.2044
563 N. Tomm,, A. Javadi,, N.O. Antoniadis,, D. Najer,, M.C. Löbl,, A.R. Korsch,, R. Schott,, S.R. Valentin,, A.D. Wieck,, A. Ludwig,, R.J. Warburton,: A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021)
https://doi.org/10.1038/s41565-020-00831-x
564 R. Ghosh,, L. Mandel,: Observation of nonclassical effects in the interference of two photons. Phys. Rev. Lett. 59(17), 1903(1987)
https://doi.org/10.1103/PhysRevLett.59.1903
565 P.G. Kwiat,, K. Mattle,, H. Weinfurter,, A. Zeilinger,, A.V. Sergienko,, Y. Shih,: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75(24), 4337(1995)
https://doi.org/10.1103/PhysRevLett.75.4337
566 F. Kaneda,, B.G. Christensen,, J.J. Wong,, H.S. Park,, K.T. McCusker,, P.G. Kwiat,: Time-multiplexed heralded single-photon source. Optica 2(12), 1010(2015)
https://doi.org/10.1364/OPTICA.2.001010
567 J.F. Clauser,: Experimental distinction between the quantum and classical field theoretic predictions for the photoelectric effect. Phys. Rev. D 9(4), 853(1974)
https://doi.org/10.1103/PhysRevD.9.853
568 F. Diedrich,, H. Walther,: Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58(3), 203(1987)
https://doi.org/10.1103/PhysRevLett.58.203
569 H.J. Kimble,, M. Dagenais,, L. Mandel,: Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39(11), 691(1977)
https://doi.org/10.1103/PhysRevLett.39.691
570 W.E. Moerner,, L. Kador,: Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62(21), 2535(1989)
https://doi.org/10.1103/PhysRevLett.62.2535
571 C. Kurtsiefer,, S. Mayer,, P. Zarda,, H. Weinfurter,: Stable solid-state source of single photons. Phys. Rev. Lett. 85(2), 290(2000)
https://doi.org/10.1103/PhysRevLett.85.290
572 P. Michler,, A. Kiraz,, C. Becher,, W.V. Schoenfeld,, P. Petroff,, L. Zhang,, E.L. Hu,, A. Imamoglu,: A quantum dot single-photon turnstile device. Science 290(5500), 2282(2000)
https://doi.org/10.1126/science.290.5500.2282
573 S. Castelletto,, B.C. Johnson,, V. Ivády,, N. Stavrias,, T. Umeda,, A. Gali,, T. Ohshima,: A silicon carbide room-temperature single-photon source. Nat. Mater. 13(2), 151(2014)
https://doi.org/10.1038/nmat3806
574 T.T. Tran,, K. Bray,, M.J. Ford,, M. Toth,, I. Aharonovich,: Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11(1), 37(2016)
https://doi.org/10.1038/nnano.2015.242
575 P. Senellart,, G. Solomon,, A. White,: High-performance semi-conductor quantum-dot single-photon sources. Nat. Nanotechnol. 12(11), 1026(2017)
https://doi.org/10.1038/nnano.2017.218
576 H. Wang,, Y.M. He,, T.H. Chung,, H. Hu,, Y. Yu,, S. Chen,, X. Ding,, M.C. Chen,, J. Qin,, X. Yang,, R.Z. Liu,, Z.C. Duan,, J.P. Li,, S. Gerhardt,, K. Winkler,, J. Jurkat,, L.J. Wang,, N. Gregersen,, Y.H. Huo,, Q. Dai,, S. Yu,, S. Höfling,, C.Y. Lu,, J.W. Pan,: Towards optimal single-photon sources from polarized micro-cavities. Nat. Photon. 13(11), 770(2019)
https://doi.org/10.1038/s41566-019-0494-3
577 M. Varnava,, D.E. Browne,, T. Rudolph,: How good must single photon sources and detectors be for efficient linear optical quantum computation. Phys. Rev. Lett. 100(6), 060502(2008)
https://doi.org/10.1103/PhysRevLett.100.060502
578 H. Vahlbruch,, M. Mehmet,, K. Danzmann,, R. Schnabel,: Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett. 117(11), 110801(2016)
https://doi.org/10.1103/PhysRevLett.117.110801
579 A. Furusawa,, J.L. Sorensen,, S.L. Braunstein,, C.A. Fuchs,, H.J. Kimble,, E.S. Polzik,: Unconditional quantum teleportation. Science 282(5389), 706(1998)
https://doi.org/10.1126/science.282.5389.706
580 M.V. Larsen,, X. Guo,, C.R. Breum,, J.S. Neergaard-Nielsen,, U.L. Andersen,: Deterministic generation of a two-dimensional cluster state. Science 366(6463), 369(2019)
https://doi.org/10.1126/science.aay4354
581 L. Tian,, S. Li,, H. Yuan,, H. Wang,: Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line. J. Phys. Soc. Jpn. 85, 124403(2016)
https://doi.org/10.7566/JPSJ.85.124403
582 M.V. Jabir,, G.K. Samanta,: Robust, high brightness, degenerate entangled photon source at room temperature. Sci. Rep. 7, 12613(2017)
https://doi.org/10.1038/s41598-017-12709-5
583 M.M. Weston,, H.M. Chrzanowski,, S. Wollmann,, A. Boston,, J. Ho,, L.K. Shalm,, V.B. Verma,, M.S. Allman,, S.W. Nam,, R.B. Patel,, S. Slussarenko,: Efficient and pure femtosecondpulse- length source of polarization-entangled photons. Geoff. J. Opt. Express 24, 10869–10879 (2016)
https://doi.org/10.1364/OE.24.010869
584 F. Kaneda,, K. Garay-Palmett,, A.B. U’Ren,, P.G. Kwiat,: Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion. Opt. Express 24, 10733–10747 (2016)
https://doi.org/10.1364/OE.24.010733
585 P. Vergyris,, T. Meany,, T. Lunghi,, G. Sauder,, J. Downes,, M. Steel,, M. Withford,, O. Alibart,, S. Tanzilli,: On-chip generation of heralded photon-number states. Sci. Rep. 6, 35975(2016)
https://doi.org/10.1038/srep35975
586 S. Krapick,, B. Brecht,, H. Herrmann,, V. Quiring,, C. Silberhorn,: On-chip generation of photon-triplet states. Opt. Express 24, 2836–2849 (2016)
https://doi.org/10.1364/OE.24.002836
587 N. Montaut,, L. Sansoni,, E. Meyer-Scott,, R. Ricken,, V. Quiring,, H. Herrmann,, C. Silberhorn,: High-efficiency plug-and-play source of heralded single photons. Phys. Rev. Appl. 8, 024021(2017)
https://doi.org/10.1103/PhysRevApplied.8.024021
588 P. Vergyris,, F. Kaiser,, E. Gouzien,, G. Sauder,, T. Lunghi,, S. Tanzilli,: Fully guided-wave photon pair source for quantum applications. Quantum Sci. Technol. 2, 024007(2017)
https://doi.org/10.1088/2058-9565/aa6ed2
589 D.S. Ding,, W. Zhang,, S. Shi,, Z.Y. Zhou,, Y. Li,, B.S. Shi,, G.C. Guo,: Hybrid-cascaded generation of tripartite telecom photons using an atomic ensemble and a nonlinear waveguide. Optica 2, 642–645 (2015)
https://doi.org/10.1364/OPTICA.2.000642
590 F. Setzpfandt,, A.S. Solntsev,, J. Titchener,, C.W. Wu,, C. Xiong,, R. Schiek,, T. Pertsch,, D.N. Neshev,, A.A. Sukhorukov,: Tunable generation of entangled photons in a nonlinear directional coupler. Laser Photon. Rev. 10, 131–136 (2015)
https://doi.org/10.1002/lpor.201500216
591 X. Guo,, C.L. Zou,, C. Schuck,, H. Jung,, R. Cheng,, H.X. Tang,: Parametric down-conversion photon-pair source on a nanophotonic chip. Light Sci. Appl. 6, e16249(2017)
https://doi.org/10.1038/lsa.2016.249
592 P. Kultavewuti,, E.Y. Zhu,, X. Xing,, L. Qian,, V. Pusino,, M. Sorel,, J.S. Aitchison,: Polarization-entangled photon pair sources based on spontaneous four wave mixing assisted by polarization mode dispersion. Sci. Rep. 7, 5785(2017)
https://doi.org/10.1038/s41598-017-06010-8
593 D. Cruz-Delgado,, R. Ramirez-Alarcon,, E. Ortiz-Ricardo,, J. Monroy-Ruz,, F. Dominguez-Serna,, H. Cruz-Ramirez,, K. Garay- Palmett,, A.B. U’Ren,: Fiber-based photon-pair source capable of hybrid entanglement in frequency and transverse mode, controllably scalable to higher dimensions. Sci. Rep. 6, 27377(2016)
https://doi.org/10.1038/srep27377
594 S. Rogers,, D. Mulkey,, X. Lu,, W.C. Jiang,, Q. Lin,: High visibility time-energy entangled photons from a silicon nanophotonic chip. ACS Photon. 3(10), 1754–1761 (2016)
https://doi.org/10.1021/acsphotonics.6b00423
595 M. Cordier,, A. Orieux,, R. Gabet,, T. Harlé,, N. Dubreuil,, E. Diamanti,, P. Delaye,, I. Zaquine,: Raman-tailored photonic crystal fiber for telecom band photon-pair generation. Opt. Lett. 42, 2583–2586 (2017)
https://doi.org/10.1364/OL.42.002583
596 Z. Yan,, Y. Duan,, L.G. Helt,, M. Ams,, M.J. Withford,, M.J. Steel,: Generation of heralded single photons beyond 1100 nm by spontaneous four-wave mixing in a side-stressed femtosecond laser-written waveguide. Appl. Phys. Lett. 107, 231106(2015)
https://doi.org/10.1063/1.4937374
597 F. Olbrich,, J. Höschele,, M. Müller,, J. Kettler,, S. Luca Portalupi,, M. Paul,, M. Jetter,, P. Michler,: Polarization-entangled photons from an InGaAs-based quantum dot emitting in the telecom C-band. Appl. Phys. Lett. 111, 133106(2017)
https://doi.org/10.1063/1.4994145
598 S.L. Portalupi,, G. Hornecker,, V. Giesz,, T. Grange,, A. Lemaître,, J. Demory,, I. Sagnes,, N.D. Lanzillotti-Kimura,, L. Lanco,, A. Auffèves,, P. Senellart,: Bright phonon-tuned single-photon source. Nano Lett. 15(10), 6290–6294 (2015)
https://doi.org/10.1021/acs.nanolett.5b00876
599 N. Somaschi,, V. Giesz,, L. De Santis,, J.C. Loredo,, M.P. Almeida,, G. Hornecker,, S.L. Portalupi,, T. Grange,, C. Antón,, J. Demory,, C. Gómez,, I. Sagnes,, N.D. Lanzillotti-Kimura,, A. Lemaítre,, A. Auffeves,, A.G. White,, L. Lanco,, P. Senellart,: Near-optimal single-photon sources in the solid state. Nat. Photon 10, 340–345 (2016)
https://doi.org/10.1038/nphoton.2016.23
600 J.C. Loredo,, N.A. Zakaria,, N. Somaschi,, C. Anton,, L. De Santis,, V. Giesz,, T. Grange,, M.A. Broome,, O. Gazzano,, G. Coppola,, I. Sagnes,: Scalable performance in solid-state single-photon sources. Optica 3, 433–440 (2016)
https://doi.org/10.1364/OPTICA.3.000433
601 G. Kiršanskė,, H. Thyrrestrup,, R.S. Daveau,, C.L. Dreeßen,, T. Pregnolato,, L. Midolo,, P. Tighineanu,, A. Javadi,, S. Stobbe,, R. Schott,, A. Ludwig,, A.D. Wieck,, S.I. Park,, J.D. Song,, A.V. Kuhlmann,, I. Söllner,, M.C. Löbl,, R.J. Warburton,, P. Lodahl,: Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide. Phys. Rev. B 96, 165306(2017)
https://doi.org/10.1103/PhysRevB.96.165306
602 A. Schlehahn,, S. Fischbach,, R. Schmidt,, A. Kaganskiy,, A. Strittmatter,, S. Rodt,, T. Heindel,, S. Reitzenstein,: A stand-alone fiber-coupled single-photon source. Sci. Rep. 8, 1340(2018)
https://doi.org/10.1038/s41598-017-19049-4
603 H. Snijders,, J.A. Frey,, J. Norman,, V.P. Post,, A.C. Gossard,, J.E. Bowers,, M.P. van Exter,, W. Löffler,, D. Bouwmeester,: Fiber-coupled cavity-QED source of identical single photons. Phys. Rev. Appl. 9, 0310022018(2018)
https://doi.org/10.1103/PhysRevApplied.9.031002
604 X. Ding,, Y. He,, Z.C. Duan,, N. Gregersen,, M.C. Chen,, S. Unsleber,, S. Maier,, C. Schneider,, M. Kamp,, S. Höfling,, C.Y. Lu,: On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401(2016)
https://doi.org/10.1103/PhysRevLett.116.020401
605 M. Davanco,, J. Liu,, L. Sapienza,, C.Z. Zhang,, J.V. De Miranda Cardoso,, V. Verma,, R. Mirin,, S.W. Nam,, L. Liu,, K. Srinivasan,: Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices. Nat. Commun. 8, 889(2017)
https://doi.org/10.1038/s41467-017-00987-6
606 T. Heindel,, A. Thoma,, M. von Helversen,, M. Schmidt,, A. Schlehahn,, M. Gschrey,, P. Schnauber,, J.H. Schulze,, A. Strittmatter,, J. Beyer,, S. Rodt,, A. Carmele,, A. Knorr,, S. Reitzenstein,: A bright triggered twin-photon source in the solid state. Nat. Commun. 8, 14870(2017)
https://doi.org/10.1038/ncomms14870
607 D. Huber,, M. Reindl,, S.F. Covre da Silva,, C. Schimpf,, J. Martín-Sánchez,, H. Huang,, G. Piredda,, J. Edlinger,, A. Rastelli,, R. Trotta,: Strain-tunable GaAs quantum dot: a nearly dephasingfree source of entangled photon pairs on demand. Phys. Rev. Lett. 121, 033902(2018)
https://doi.org/10.1103/PhysRevLett.121.033902
608 D. Huber,, M. Reindl,, Y. Huo,, H. Huang,, J.S. Wildmann,, O.G. Schmidt,, A. Rastelli,, R. Trotta,: Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun. 8, 15506(2017)
https://doi.org/10.1038/ncomms15506
609 K.D. Jöns,, L. Schweickert,, M.A.M. Versteegh,, D. Dalacu,, P.J. Poole,, A. Gulinatti,, A. Giudice,, V. Zwiller,, M.E. Reimer,: Bright nanoscale source of deterministic entangled photon pairs violating Bell’s inequality. Sci. Rep. 7, 1700(2017)
https://doi.org/10.1038/s41598-017-01509-6
610 M. Khoshnegar,, T. Huber,, A. Predojević,, D. Dalacu,, M. Prilmüller,, J. Lapointe,, X. Wu,, P. Tamarat,, B. Lounis,, P. Poole,, G. Weihs,, H. Majedi,: A solid state source of photon triplets based on quantum dot molecules. Nat. Commun. 8, 15716(2017)
https://doi.org/10.1038/ncomms15716
611 J. Benedikter,, H. Kaupp,, T. Hümmer,, Y. Liang,, A. Bommer,, C. Becher,, A. Krueger,, J.M. Smith,, T.W. Hänsch,, D. Hunger,: Cavity-enhanced single-photon source based on the siliconvacancy center in diamond. Phys. Rev. Appl. 7, 024031(2017)
https://doi.org/10.1103/PhysRevApplied.7.024031
612 X.L. Wang,, L.K. Chen,, W. Li,, H.L. Huang,, C. Liu,, C. Chen,, Y.H. Luo,, Z.E. Su,, D. Wu,, Z.D. Li,, H. Lu,: Experimental ten-photon entanglement. Phys. Rev. Lett. 117, 210502(2016)
https://doi.org/10.1103/PhysRevLett.117.210502
613 D.B. Higginbottom,, L. Slodička,, G. Araneda,, L. Lachman,, R. Filip,, M. Hennrich,, R. Blatt,: Pure single photons from a trapped atom source. New J. Phys. 18, 093038(2016)
https://doi.org/10.1088/1367-2630/18/9/093038
614 Z. Peng,, S. de Graaf,, J. Tsai,, O.V. Astafiev,: Tuneable ondemand single-photon source in the microwave range. Nat. Commun. 7, 12588(2016)
https://doi.org/10.1038/ncomms12588
615 W. Geng,, M. Manceau,, N. Rahbany,, V. Sallet,, M. De Vittorio,, L. Carbone,, Q. Glorieux,, A. Bramati,, C. Couteau,: Localised excitation of a single photon source by a nanowaveguide. Sci. Rep. 6, 19721(2016)
https://doi.org/10.1038/srep19721
616 Y.H. Li,, Z.Y. Zhou,, L.T. Feng,, W.T. Fang,, S.L. Liu,, S.K. Liu,, K. Wang,, X.F. Ren,, D.S. Ding,, L.X. Xu,, B.S. Shi,: On-chip multiplexed multiple entanglement sources in a single silicon nanowire. Phys. Rev. Appl. 7, 064005(2017)
https://doi.org/10.1103/PhysRevApplied.7.064005
617 R. Kruse,, L. Sansoni,, S. Brauner,, R. Ricken,, C.S. Hamilton,, I. Jex,, C. Silberhorn,: Dual-path source engineering in integrated quantum optics. Phys. Rev. A 92, 053841(2015)
https://doi.org/10.1103/PhysRevA.92.053841
618 L. Sansoni,, K.H. Luo,, C. Eigner,, R. Ricken,, V. Quiring,, H. Herrmann,, C. Silberhorn,: A two-channel, spectrally degenerate polarization entangled source on chip. npj Quantum Inf. 3, 5(2017)
https://doi.org/10.1038/s41534-016-0005-z
619 S. Atzeni,, A.S. Rab,, G. Corrielli,, E. Polino,, M. Valeri,, P. Mataloni,, N. Spagnolo,, A. Crespi,, F. Sciarrino,, R. Osellame,: Integrated sources of entangled photons at the telecom wave-length in femtosecond-laser-written circuits. Optica 5, 311–314 (2018)
https://doi.org/10.1364/OPTICA.5.000311
620 B. Lounis,, M. Orrit,: Single-photon sources. Rep. Prog. Phys. 68, 1129(2005)
https://doi.org/10.1088/0034-4885/68/5/R04
621 H. Mäntynen,, N. Anttu,, Z. Sun,, H. Lipsanen,: Single-photon sources with quantum dots in III-V nanowires. Nanophotonics 8(5), 747–769 (2019)
https://doi.org/10.1515/nanoph-2019-0007
622 U. Sinha,, S.N. Sahoo,, A. Singh,, K. Joarder,, R. Chatterjee,, S. Chakraborti,: Single-photon sources. Opt. Photon. News 30(9), 32–39 (2019)
https://doi.org/10.1364/OPN.30.9.000032
623 J. Lee,, V. Leong,, D. Kalashnikov,, J. Dai,, A. Gandhi,, L.A. Krivitsky,: Integrated single photon emitters. AVS Quantum Sci. 2, 031701(2020)
https://doi.org/10.1116/5.0011316
624 H. Ollivier,, I. Maillette de Buy Wenniger,, S. Thomas,, S.C. Wein,, A. Harouri,, G. Coppola,, P. Hilaire,, C. Millet,, A. Lemaître,, I. Sagnes,, O. Krebs,, L. Lanco,, J.C. Loredo,, C. Antón,, N. Somaschi,, P. Senellart,: Reproducibility of high-performance quantum dot single-photon sources. ACS Photon. 7(4), 1050–1059(2020)
https://doi.org/10.1021/acsphotonics.9b01805
625 S. Kück,: Single photon sources for absolute radiometry—a review about the current state of the art. Meas. Sens. 18, 100219(2021)
https://doi.org/10.1016/j.measen.2021.100219
626 H. Georgieva,, M. López,, H. Hofer,, N. Kanold,, A. Kaganskiy,, S. Rodt,, S. Reitzenstein,, S. Kück,: Absolute calibration of a single-photon avalanche detector using a bright triggered singlephoton source based on a quantum dot. Opt. Express 29(15), 23500–23507 (2021)
https://doi.org/10.1364/OE.430680
627 C. Couteau,, S. Barz,, T. Durt,, T. Gerrits,, J. Huwer,, R. Prevedel,, J. Rarity,, A. Shields,, G. Weihs,: Applications of single photons to quantum communication and computing. Nat. Rev. Phys. 5, 326(2023)
https://doi.org/10.1038/s42254-023-00583-2
628 C. Couteau,, S. Barz,, T. Durt,, T. Gerrits,, J. Huwer,, R. Prevedel,, J. Rarity,, A. Shields,, G. Weihs,: Applications of single photons in quantum metrology, biology and the foundations of quantum physics. Nat. Rev. Phys. 5, 354(2023)
https://doi.org/10.1038/s42254-023-00589-w
629 S. Khalid,, F.P. Laussy,: Perfect single-photon sources. Sci. Rep. 14, 2684(2024)
https://doi.org/10.1038/s41598-023-47585-9
630 M.B. Gaither-Ganim,, S.A. Newlon,, M.G. Anderson,, B. Lee,: Organic molecule single-photon sources. Oxford Open Mater. Sci. 3, 1(2024)
https://doi.org/10.1093/oxfmat/itac017
631 S. Guo,, S. Germanis,, T. Taniguchi,, K. Watanabe,, F. Withers,, I.J. Luxmoore,: Source, electrically driven site-controlled single photon. ACS Photon. 10(8), 2549–2555 (2023)
https://doi.org/10.1021/acsphotonics.3c00097
632 S. Castelletto,, A. Boretti,: Perspective on solid-state singlephoton sources in the infrared for quantum technology. Adv. Quantum Technol. 6, 2300145(2023)
https://doi.org/10.1002/qute.202300145
633 P. Lodahl,, A. Ludwig,, R.J. Warburton,: A deterministic source of single photons. Phys. Today 75(3), 44–50 (2022)
https://doi.org/10.1063/PT.3.4962
634 L. Vannucci,, N. Gregersen,: Highly efficient and indistinguishable single-photon sources via phonon-decoupled two-color excitation. Phys. Rev. B 107, 195306(2023)
https://doi.org/10.1103/PhysRevB.107.195306
635 X. Cao,, M. Zopf,, F. Ding,: Telecom wavelength single photon sources. J. Semicond. 40, 071901(2019)
https://doi.org/10.1088/1674-4926/40/7/071901
636 P. Senellart,: Semiconductor single-photon sources: progresses and applications. Photoniques 107, 40–43 (2021)
https://doi.org/10.1051/photon/202110740
637 X. You,, M.Y. Zheng,, S. Chen,, R.Z. Liu,, J. Qin,, M.C. Xu,, Z.X. Ge,, T.H. Chung,, Y.K. Qiao,, Y.F. Jiang,, H.S. Zhong,, M.C. Chen,, H. Wang,, Y.M. He,, X.P. Xie,, H. Li,, L.X. You,, C. Schneider,, J. Yin,, T.Y. Chen,, M. Benyoucef,, Y.H. Huo,, S. Höfling,, Q. Zhang,, C.Y. Lu,, J.W. Pan,: Quantum interference with independent single-photon sources over 300 km fiber. Adv. Photon. 4, 066003(2022)
https://doi.org/10.1117/1.AP.4.6.066003
638 Y. Ye,, X. Lin,, W. Fang,: Room-temperature single-photon sources based on colloidal quantum dots: a review. Materials 16(24), 7684(2023)
https://doi.org/10.3390/ma16247684
639 R. Uppu,, F.T. Pedersen,, Y. Wang,, C.T. Olesen,, C. Papon,, X. Zhou,, L. Midolo,, S. Scholz,, A.D. Wieck,, A. Ludwig,, P. Lodahl,: Scalable integrated single-photon source. Sci. Adv. 6, eabc8268(2020)
https://doi.org/10.1126/sciadv.abc8268
640 A. Manjavacas,, F.J. GarcíadeAbajo,: Highly directional single-photon source. Nanophotonics 12(16), 3351–3358 (2023)
https://doi.org/10.1515/nanoph-2023-0276
641 A. Martínez,, P. Sanchis,, J. Martí,: Mach-Zehnder interferometers in photonic crystals. Opt. Quant. Electron. 37, 77–93 (2005)
https://doi.org/10.1007/s11082-005-1124-5
642 D. Perez,, I. Gasulla,, F.J. Fraile,, L. Crudgington,, D.J. Thomson,, A.Z. Khokhar,, K. Li,, W. Cao,, G.Z. Mashanovich,, J. Capmany,: Silicon photonics rectangular universal interferometer. Laser Photon. Rev. 11, 1700219(2017)
https://doi.org/10.1002/lpor.201700219
643 M. Wang,, J. Peng,, W. Wang,, M. Yang,: Photonic crystal fiberbased interferometer sensors. In: Peng, G.D. (ed.) Handbook of optical fibers. Springer, Singapore (2018)
644 L. Zhao,, B. Liu,, Y. Wu,, Y. Mao,, T. Sun,, D. Zhao,, Y. Liu,, S. Liu,: Photonic crystal all-fiber Mach-Zehnder interferometer sensor based on phase demodulation. Opt. Fiber Technol. 53, 102059(2019)
https://doi.org/10.1016/j.yofte.2019.102059
645 D. Badoni,, R. Gunnella,, A. Salamon,, V. Bonaiuto,, P. Steglich,: Design and test of silicon photonic Mach-Zehnder interferometers for data transmission applications. In: 2020 Italian Conference on Optics and Photonics (ICOP). Parma, Italy, pp. 1–3 (2020)
https://doi.org/10.1109/ICOP49690.2020.9300319
646 M. Song,, J. Steinmetz,, Y. Zhang,, J. Nauriyal,, K. Lyons,, A.N. Jordan,, J. Cardenas,: Enhanced on-chip phase measurement by inverse weak value amplification. Nat. Commun. 12, 6247(2021)
https://doi.org/10.1038/s41467-021-26522-2
647 C. Zhu,, J. Huang,: Microwave-photonic optical fiber interferometers for refractive index sensing with high sensitivity and a tunable dynamic range. Opt. Lett. 46, 2180–2183 (2021)
https://doi.org/10.1364/OL.420618
648 M. Cherchi,: Autocorrective interferometers for photonic integrated circuits. In: Proceedings 12005, Smart Photonic and Optoelectronic Integrated Circuits 2022. 1200507(2022)
649 J. Shen,, D. Donnelly,, S. Chakravarty,: Integrated photonic slow light Michelson interferometer bio sensor, Proceedings 12424, Integrated Optics: Devices, Materials, and Technologies XXVII; 124241B (2023)
650 R. Chaurasiya,, D. Arora,: Photonic quantum computing. In: Kumar, A., Gill, S.S., Abraham, A. (eds.) Quantum and block-chain for modern computing systems: vision and advancements. Lecture notes on data engineering and communications technologies. Springer, Cham (2022)
https://doi.org/10.1007/978-3-031-04613-1_4
651 D.A.B. Miller,: Self-configuring universal linear optical component. Photon. Res. 1, 1–15 (2013)
https://doi.org/10.1364/PRJ.1.000001
652 D. Pérez,, I. Gasulla,, J. Capmany,: Programmable multifunctional integrated nanophotonics. Nanophotonics 7(8), 1351–1371 (2018)
https://doi.org/10.1515/nanoph-2018-0051
653 D. Pérez,, I. Gasulla,, J. Capmany,, R.A. Soref,: Reconfigurable lattice mesh designs for programmable photonic processors. Opt. Express 24, 12093–12106 (2016)
https://doi.org/10.1364/OE.24.012093
654 R. Potter,, W. Eisenman,: Infrared photodetectors: a review of operational detectors. Appl. Opt. 1(5), 567–574 (1962)
https://doi.org/10.1364/AO.1.000567
655 R. Hadfield,: Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009)
https://doi.org/10.1038/nphoton.2009.230
656 F. Marsili,, V. Verma,, J. Stern,, S. Harrington,, A.E. Lita,, T. Gerrits,, I. Vayshenker,, B. Baek,, M.D. Shaw,, R.P. Mirin,, S.W. Nam,: Detecting single infrared photons with 93% system efficiency. Nat. Photon. 7, 210–214 (2013)
https://doi.org/10.1038/nphoton.2013.13
657 I. Esmaeil Zadeh,, J.W.N. Los,, R.B.M. Gourgues,, J. Chang,, A.W. Elshaari,, J.R. Zichi,, Y.J. van Staaden,, J.P.E. Swens,, N. Kalhor,, A. Guardiani,, Y. Meng,, K. Zou,, S. Dobrovolskiy,, A.W. Fognini,, D.R. Schaart,, D. Dalacu,, P.J. Poole,, M.E. Reimer,, X. Hu,, S.F. Pereira,, V. Zwiller,, S.N. Dorenbos,: Efficient single-photon detection with 7.7 ps time resolution for photoncorrelation measurements. ACS Photon. 7, 1780–1787 (2020)
https://doi.org/10.1021/acsphotonics.0c00433
658 M. Perrenoud,, M. Caloz,, E. Amri,, C. Autebert,, C. Schönenberger,, H. Zbinden,, F. Bussières,: Operation of parallel SNSPDs at high detection rates. Supercond. Sci. Technol. 34, 024002(2021)
https://doi.org/10.1088/1361-6668/abc8d0
659 L. Stasi,, G. Gras,, R. Berrazouane,, F. Bussieres,: High-efficiency and fast photon-number-resolving SNSPD. In: Quantum Information and Measurement VI 2021, F. Sciarrino, N. Treps, M. Giustina, and C. Silberhorn, eds., Technical Digest Series, Optica Publishing Group (2021)
660 V.B. Verma,, B. Korzh,, A.B. Walter,, A.E. Lita,, R.M. Briggs,, M. Colangelo,, Y. Zhai,, E.E. Wollman,, A.D. Beyer,, J.P. Allmaras,, H. Vora,, D. Zhu,, E. Schmidt,, A.G. Kozorezov,, K.K. Berggren,, R.P. Mirin,, S.W. Nam,, M.D. Shaw,: Single-photon detection in the mid-infrared up to 10 µm wavelength using tungsten silicide superconducting nanowire detectors. APL Photon. 6, 056101(2021)
https://doi.org/10.1063/5.0048049
661 E.D. Walsh,, W. Jung,, G.H. Lee,, D.K. Efetov,, K.C. Fong,: Josephson junction infrared single-photon detector. Science 372, 409–412 (2021)
https://doi.org/10.1126/science.abf5539
662 F. Grünenfelder,, A. Boaron,, G.V. Resta,, M. Perrenoud,, D. Rusca,, C. Barreiro,, R. Houlmann,, R. Sax,, L. Stasi,, S. El-Khoury,, E. Hänggi,, N. Bosshard,, F. Bussières,, H. Zbinden,: Fast single-photon detectors and real-time key distillation enable high secret-key-rate quantum key distribution systems. Nat. Photon. 17, 422–426 (2023)
https://doi.org/10.1038/s41566-023-01168-2
663 I. Charaev,, D.A. Bandurin,, A.T. Bollinger,, I.Y. Phinney,, I. Drozdov,, M. Colangelo,, B.A. Butters,, T. Taniguchi,, K. Watanabe,, X. He,, O. Medeiros,, I. Božović,, P. Jarillo-Herrero,, K.K. Berggren,: Single-photon detection using high-temperature superconductors. Nat. Nanotechnol. 18, 343–349 (2023)
https://doi.org/10.1038/s41565-023-01325-2
664 S.M. Buckley,, M. Stephens,, J.H. Lehman,: Single photon detectors and metrology. ECS Trans. 109, 149(2022)
https://doi.org/10.1149/10903.0149ecst
665 I. Esmaeil Zadeh,, J. Chang,, J.W.N. Los,, S. Gyger,, A.W. Elshaari,, S. Steinhauer,, S.N. Dorenbos,, V. Zwiller,: Superconducting nanowire single-photon detectors: a perspective on evolution, state-of-the-art, future developments, and applications. Appl. Phys. Lett. 118, 190502(2021)
https://doi.org/10.1063/5.0045990
666 R.H. Hadfield,, J. Leach,, F. Fleming,, D.J. Paul,, C.H. Tan,, J.S. Ng,, R.K. Henderson,, G.S. Buller,: Single-photon detection for long-range imaging and sensing. Optica 10, 1124–1141 (2023)
https://doi.org/10.1364/OPTICA.488853
667 Y. Dai,, K. Jia,, G. Zhu,, H. Li,, Y. Fei,, Y. Guo,, H. Yuan,, H. Wang,, X. Jia,, Q. Zhao,, L. Kang,, J. Chen,, S. Zhu,, P. Wu,, Z. Xie,, L. Zhang,: All-fiber device for single-photon detection. PhotoniX 4, 7(2023)
https://doi.org/10.1186/s43074-023-00085-5
668 V. Sharma,: Analysis of single photon detectors in differential phase shift quantum key distribution. Opt. Quant. Electron. 55, 888(2023)
https://doi.org/10.1007/s11082-023-05170-4
669 N.J.D. Martinez,, M. Gehl,, C.T. Derose,, A.L. Starbuck,, A.T. Pomerene,, A.L. Lentine,, D.C. Trotter,, P.S. Davids,: Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode. Opt. Express 25, 16130–16139 (2017)
https://doi.org/10.1364/OE.25.016130
670 R.E. Warburton,, G. Intermite,, M. Myronov,, P. Allred,, D.R. Leadley,, K. Gallacher,, D.J. Paul,, N.J. Pilgrim,, L.J.M. Lever,, Z. Ikonic,, R.W. Kelsall,, E. Huante-Ceron,, A.P. Knights,, G.S. Buller,: Ge-on-Si single-photon avalanche diode detectors: design, modeling, fabrication, and characterization at wavelengths 1310 and 1550 nm. IEEE Trans. Electron Devices 60(11), 3807–3813 (2013)
https://doi.org/10.1109/TED.2013.2282712
671 J. Zhang,, M. Itzler,, H. Zbinden,, J.W. Pan,: Advances in InGaAs/InP single-photon detector systems for quantum communication. Light Sci. Appl. 4, e286(2015)
https://doi.org/10.1038/lsa.2015.59
672 L.C. Comandar,, B. Fröhlich,, J.F. Dynes,, A.W. Sharpe,, M. Lucamarini,, Z.L. Yuan,, R.V. Penty,, A.J. Shields,: Gigahertz-gated InGaAs/InP single-photon detector with detection efficiency exceeding 55% at 1550 nm. J. Appl. Phys. 117, 083109(2015)
https://doi.org/10.1063/1.4913527
673 Z. Yan,, D.R. Hamel,, A.K. Heinrichs,, X. Jiang,, M.A. Itzler,, T. Jennewein,: An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode. Rev. Sci. Instrum. 83, 073105(2012)
https://doi.org/10.1063/1.4732813
674 B. Korzh,, N. Walenta,, T. Lunghi,, N. Gisin,, H. Zbinden,: Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency. Appl. Phys. Lett. 104, 081108(2014)
https://doi.org/10.1063/1.4866582
675 M. Covi,, B. Pressl,, T. Günthner,, K. Laiho,, S. Krapick,, C. Silberhorn,, G. Weihs,: Liquid-nitrogen cooled, free-running singlephoton sensitive detector at telecommunication wavelengths. Appl. Phys. B 118, 489–495 (2015)
https://doi.org/10.1007/s00340-015-6019-y
676 Q. Weng,, Z. An,, B. Zhang,, P. Chen,, X. Chen,, Z. Zhu,, W. Lu,: Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection. Sci. Rep. 5, 9389(2015)
https://doi.org/10.1038/srep09389
677 H. Li,, L. Zhang,, L. You,, X. Yang,, W. Zhang,, X. Liu,, S. Chen,, Z. Wang,, X. Xie,: Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency. Opt. Express 23, 17301–17308 (2015)
https://doi.org/10.1364/OE.23.017301
678 W.J. Zhang,, H. Li,, L.X. You,, Y.H. He,, L. Zhang,, X.Y. Liu,, X.Y. Yang,, J.J. Wu,, Q. Guo,, S.J. Chen,, Z. Wang,, X.M. Xie,: Superconducting nanowire single-photon detectors at a wavelength of 940 nm. AIP Adv. 5, 067129(2015)
https://doi.org/10.1063/1.4922548
679 T. Yamashita,, K. Waki,, S. Miki,, R.A. Kirkwood,, R.H. Hadfield,, H. Terai,: Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers. Sci. Rep. 6, 35240(2016)
https://doi.org/10.1038/srep35240
680 H.A. Atikian,, A. Eftekharian,, A. Jafari Salim,, M.J. Burek,, J.T. Choy,, A. Hamed Majedi,, M. Lončar,: Superconducting nanowire single photon detector on diamond. Appl. Phys. Lett. 104, 122602(2014)
https://doi.org/10.1063/1.4869574
681 N.A. Tyler,, J. Barreto,, G.E. Villarreal-Garcia,, D. Bonneau,, D. Sahin,, J.L. O’Brien,, M.G. Thompson,: Modelling superconducting nanowire single photon detectors in a waveguide cavity. Opt. Express 24, 8797–8808 (2016)
https://doi.org/10.1364/OE.24.008797
682 R. Arpaia,, M. Ejrnaes,, L. Parlato,, F. Tafuri,, R. Cristiano,, D. Golubev,, R. Sobolewski,, T. Bauch,, F. Lombardi,, G.P. Pepe,: High-temperature superconducting nanowires for photon detection. Physica C Superconductivity Appl. 509, 16–21 (2015)
https://doi.org/10.1016/j.physc.2014.09.017
683 H. Takesue,, S.D. Dyer,, M.J. Stevens,, V. Verma,, R.P. Mirin,, S.W. Nam,: Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica 2, 832–835 (2015)
https://doi.org/10.1364/OPTICA.2.000832
684 H. Le Jeannic,, V.B. Verma,, A. Cavaillès,, F. Marsili,, M.D. Shaw,, K. Huang,, O. Morin,, S.W. Nam,, J. Laurat,: High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared. Opt. Lett. 41, 5341–5344 (2016)
https://doi.org/10.1364/OL.41.005341
685 W. Zhang,, L. You,, H. Li,, J. Huang,, C.L. Lv,, L. Zhang,, X.Y. Liu,, J.J. Wu,, Z. Wang,, X.M. Xie,: NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature. Sci. China Phys. Mech. Astron. 60, 120314(2017)
https://doi.org/10.1007/s11433-017-9113-4
686 I.E. Zadeh,, J.W.N. Los,, R.B.M. Gourgues,, V. Steinmetz,, G. Bulgarini,, S.M. Dobrovolskiy,, V. Zwiller,, S.N. Dorenbos,: Single-photon detectors combining high efficiency, high detection rates, and ultra-high timing resolution. APL Photon. 2, 111301(2017)
https://doi.org/10.1063/1.5000001
687 Q. Wang,, J.J. Renema,, A. Engel,, M.J.A. de Dood,: Design of NbN superconducting nanowire single-photon detectors with enhanced infrared detection efficiency. Phys. Rev. Appl. 8, 034004(2017)
https://doi.org/10.1103/PhysRevApplied.8.034004
688 V.V. Vorobyov,, A.Y. Kazakov,, V.V. Soshenko,, A.A. Korneev,, M.Y. Shalaginov,, S.V. Bolshedvorskii,, V.N. Sorokin,, A.V. Divochiy,, Y.B. Vakhtomin,, K.V. Smirnov,, B.M. Voronov,: Super-conducting detector for visible and near-infrared quantum emitters [Invited]. Opt. Mater. Express 7, 513–526 (2017)
https://doi.org/10.1364/OME.7.000513
689 S. Miki,, M. Yabuno,, T. Yamashita,, H. Terai,: Stable, high-performance operation of a fiber-coupled superconducting nanowire avalanche photon detector. Opt. Express 25, 6796–6804 (2017)
https://doi.org/10.1364/OE.25.006796
690 F. Ma,, M.Y. Zheng,, Q. Yao,, X.P. Xie,, Q. Zhang,, J.W. Pan,: 1.064-µm-band up-conversion single-photon detector. Opt. Express 25, 14558–14564 (2017)
https://doi.org/10.1364/OE.25.014558
691 J.S. Pelc,, L. Ma,, C.R. Phillips,, Q. Zhang,, C. Langrock,, O. Slattery,, X. Tang,, M.M. Fejer,: Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis. Opt. Express 19, 21445–21456 (2011)
https://doi.org/10.1364/OE.19.021445
692 Q. Hu,, J.S. Dam,, C. Pedersen,, P. Tidemand-Lichtenberg,: High-resolution mid-IR spectrometer based on frequency upconversion. Opt. Lett. 37, 5232–5234 (2012)
https://doi.org/10.1364/OL.37.005232
693 J.S. Pelc,, P.S. Kuo,, O. Slattery,, L. Ma,, X. Tang,, M.M. Fejer,: Dual-channel, single-photon upconversion detector at 1.3 µm. Opt. Express 20, 19075–19087 (2012)
https://doi.org/10.1364/OE.20.019075
694 E. Pomarico,, B. Sanguinetti,, R. Thew,, H. Zbinden,: Room temperature photon number resolving detector for infared wave-lengths. Opt. Express 18, 10750–10759 (2010)
https://doi.org/10.1364/OE.18.010750
695 M.Y. Zheng,, G.L. Shentu,, F. Ma,, F. Zhou,, H.T. Zhang,, Y.Q. Dai,, X. Xie,, Q. Zhang,, J.W. Pan,: Integrated four-channel all-fiber up-conversion single-photon-detector with adjustable efficiency and dark count. Rev. Sci. Instrum. 87, 093115(2016)
https://doi.org/10.1063/1.4963176
696 K. Inomata,, Z. Lin,, K. Koshino,, W.D. Oliver,, J.S. Tsai,, T. Yamamoto,, Y. Nakamura,: Single microwave-photon detector using an artificial Λ-type three-level system. Nat. Commun. 7, 12303(2016)
https://doi.org/10.1038/ncomms12303
697 F. Najafi,, F. Marsili,, E. Dauler,, R.J. Molnar,, K.K. Berggren,: Timing performance of 30-nm-wide superconducting nanowire avalanche photodetectors. Appl. Phys. Lett. 100, 152602(2012)
https://doi.org/10.1063/1.3703588
698 R.M. Heat,: Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector. Appl. Phys. Lett. 104, 063503(2014)
https://doi.org/10.1063/1.4865199
699 A.J. Miller,, A.E. Lita,, B. Calkins,, I. Vayshenker,, S.M. Gruber,, S.W. Nam,: Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. Opt. Express 19, 9102–9110 (2011)
https://doi.org/10.1364/OE.19.009102
700 B. Calkins,, P.L. Mennea,, A.E. Lita,, B.J. Metcalf,, W.S. Kolthammer,, A. Lamas-Linares,, J.B. Spring,, P.C. Humphreys,, R.P. Mirin,, J.C. Gates,, P.G. Smith,: High quantum-efficiency photon-number-resolving detector for photonic on-chip information processing. Opt. Express 21, 22657–22670 (2013)
https://doi.org/10.1364/OE.21.022657
701 J.F. Höpker,, M. Bartnick,, E. Meyer-Scott,, F. Thiele,, T. Meier,, T. Bartley,, S. Krapick,, N.M. Montaut,, M. Santandrea,, H. Herrmann,, S. Lengeling,, R. Ricken,, V. Quiring,, A.E. Lita,, V.B. Verma,, T. Gerrits,, S.W. Nam,, C. Silberhorn,: Towards integrated superconducting detectors on lithium niobate waveguides. Proc. SPIE 10358(2017)
702 A. Lamas-Linares,, B. Calkins,, N.A. Tomlin,, T. Gerrits,, A.E. Lita,, J. Beyer,, R.P. Mirin,, S. Woo Nam,: Nanosecond-scale timing jitter for single photon detection in transition edge sensors. Appl. Phys. Lett. 102, 231117(2013)
https://doi.org/10.1063/1.4809731
703 M. Avenhaus,, K. Laiho,, M.V. Chekhova,, C. Silberhorn,: Accessing higher order correlations in quantum optical states by time multiplexing. Phys. Rev. Lett. 104, 063602(2010)
https://doi.org/10.1103/PhysRevLett.104.063602
704 O. Thomas,, Z. Yuan,, A. Shields,: Practical photon number detection with electric field-modulated silicon avalanche photodiodes. Nat. Commun. 3, 644(2012)
https://doi.org/10.1038/ncomms1641
705 Y. Yuan,, Q. Dong,, B. Yang,, F. Guo,, Q. Zhang,, M. Han,, J. Huang,: Solution-processed nanoparticle super-float-gated organic field-effect transistor as un-cooled ultraviolet and infrared photon counter. Sci. Rep. 3, 2707(2013)
https://doi.org/10.1038/srep02707
706 M. Akhlaghi,, E. Schelew,, J. Young,: Waveguide integrated superconducting single-photon detectors implemented as nearperfect absorbers of coherent radiation. Nat. Commun. 6, 8233(2015)
https://doi.org/10.1038/ncomms9233
707 J.P. Sprengers,, A. Gaggero,, D. Sahin,, S. Jahanmirinejad,, G. Frucci,, F. Mattioli,, R. Leoni,, J. Beetz,, M. Lermer,, M. Kamp,, S. Höfling,, R. Sanjines,, A. Fiore,: Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99, 181110(2011)
https://doi.org/10.1063/1.3657518
708 S. Jahanmirinejad,, G. Frucci,, F. Mattioli,, D. Sahin,, A. Gaggero,, R. Leoni,, A. Fiore,: Photon-number resolving detector based on a series array of superconducting nanowires. Appl. Phys. Lett. 101, 072602(2012)
https://doi.org/10.1063/1.4746248
709 G. Reithmaier,, S. Lichtmannecker,, T. Reichert,, P. Hasch,, K. Müller,, M. Bichler,, R. Gross,, J.J. Finley,: On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors. Sci. Rep. 3, 1901(2013)
https://doi.org/10.1038/srep01901
710 D. Sahin,, A. Gaggero,, J.W. Weber,, I. Agafonov,, M.A. Verheijen,, F. Mattioli,, J. Beetz,, M. Kamp,, S. Hofling,, M.C.M. van de Sanden,, R. Leoni,, A. Fiore,: Waveguide nanowire superconducting single-photon detectors fabricated on gaas and the study of their optical properties. IEEE J. Sel. Top. Quantum Electron. 21(3800210), 1–10 (2015)
https://doi.org/10.1109/JSTQE.2014.2359539
711 Z. Zhou,, S. Jahanmirinejad,, F. Mattioli,, D. Sahin,, G. Frucci,, A. Gaggero,, R. Leoni,, A. Fiore,: Superconducting series nanowire detector counting up to twelve photons. Opt. Express 22, 3475–3489 (2014)
https://doi.org/10.1364/OE.22.003475
712 M. Kaniber,, F. Flassig,, G. Reithmaier,, R. Gross,, J.J. Finley,: Integrated superconducting detectors on semiconductors for quantum optics applications. Appl. Phys. B 122, 115(2016)
https://doi.org/10.1007/s00340-016-6376-1
713 M. Drummond,, M. Barzik,, J. Bird,, D.S. Zhang,, C.P. Lechene,, D.P. Corey,, L.L. Cunningham,, T.B. Friedman,: Live-cell imaging of actin dynamics reveals mechanisms of stereocilia length regulation in the inner ear. Nat. Commun. 6, 6873(2015)
https://doi.org/10.1038/ncomms7873
714 F. Mattioli,, Z. Zhou,, A. Gaggero,, R. Gaudio,, R. Leoni,, A. Fiore,: Photon-counting and analog operation of a 24-pixel photon number resolving detector based on superconducting nanowires. Opt. Express 24, 9067–9076 (2016)
https://doi.org/10.1364/OE.24.009067
715 J. Li,, R.A. Kirkwood,, L.J. Baker,, D. Bosworth,, K. Erotokritou,, A. Banerjee,, R.M. Heath,, C.M. Natarajan,, Z.H. Barber,, M. Sorel,, R.H. Hadfield,: Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi) superconducting nanowires. Opt. Express 24, 13931–13938 (2016)
https://doi.org/10.1364/OE.24.013931
716 M.G. Tanner,, L.S.E. Alvarez,, W. Jiang,, R.J. Warburton,, Z.H. Barber,, R.H. Hadfield,: A superconducting nanowire single photon detector on lithium niobate. Nanotechnology 23, 505201(2012)
https://doi.org/10.1088/0957-4484/23/50/505201
717 P. Cavalier,, J.-C. Villégier,, P. Feautrier,, C. Constancias,, A. Morand,: Light interference detection on-chip by integrated SNSPD counters. AIP Adv. 1, 042120(2011)
https://doi.org/10.1063/1.3656744
718 S. Ferrari,, O. Kahl,, V. Kovalyuk,, G.N. Goltsman,, A. Korneev,, W.H. Pernice,: Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires. Appl. Phys. Lett. 106, 151101(2015)
https://doi.org/10.1063/1.4917166
719 O. Kahl,, S. Ferrari,, V. Kovalyuk,, G.N. Goltsman,, A. Korneev,, W.H.P. Pernice,: Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths. Sci. Rep. 5, 10941(2015)
https://doi.org/10.1038/srep10941
720 C. Schuck,, W.H.P. Pernice,, H.X. Tang,: NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits. Appl. Phys. Lett. 102, 051101(2013)
https://doi.org/10.1063/1.4788931
721 C. Schuck,, X. Guo,, L. Fan,, X. Ma,, M. Poot,, H.X. Tang,: Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip. Nat. Commun. 7, 10352(2016)
https://doi.org/10.1038/ncomms10352
722 A.D. Beyer,, R.M. Briggs,, F. Marsili,, J.D. Cohen,, S.M. Meenehan,, O.J. Painter,, M.D. Shaw,: Waveguide-coupled superconducting nanowire single-photon detectors. In: CLEO: 2015, OSA Technical Digest (online) (Optica Publishing Group) (2015)
723 J.M. Shainline,, S.M. Buckley,, N. Nader,, C.M. Gentry,, K.C. Cossel,, J.W. Cleary,, M. Popović,, N.R. Newbury,, S.W. Nam,, R.P. Mirin,: Room-temperature-deposited dielectrics and superconductors for integrated photonics. Opt. Express 25, 10322–10334(2017)
https://doi.org/10.1364/OE.25.010322
724 P. Rath,, O. Kahl,, S. Ferrari,, F. Sproll,, G. Lewes-Malandrakis,, D. Brink,, K. Ilin,, M. Siegel,, C. Nebel,, W. Pernice,: Supercon-ducting single-photon detectors integrated with diamond nanophotonic circuits. Light Sci. Appl. 4, e338(2015)
https://doi.org/10.1038/lsa.2015.111
725 M.D. Eisaman,, J. Fan,, A. Migdall,, S.V. Polyakov,: Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101(2011)
726 C.M. Natarajan,, M.G. Tanner,, R.H. Hadfield,: Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001(2012)
https://doi.org/10.1088/0953-2048/25/6/063001
727 D. Melati,, A. Melloni,, F. Morichetti,: Real photonic waveguides: guiding light through imperfections. Adv. Opt. Photon. 6, 156–224 (2014)
https://doi.org/10.1364/AOP.6.000156
728 M. Bazzan,, C. Sada,: Optical waveguides in lithium niobate: recent developments and applications. Appl. Phys. Rev. 2, 040603(2015)
https://doi.org/10.1063/1.4931601
729 S. Kima,, R. Yan,: Recent developments in photonic, plasmonic and hybrid nanowire waveguides. J. Mater. Chem. C 6, 11795(2018)
https://doi.org/10.1039/C8TC02981D
730 S. Saito,, I. Tomita,, M. Sotto,, K. Debnath,, J. Byers,, A.Z. Al-Attili,, D. Burt,, M.K. Husain,, H. Arimoto,, K. Ibukuro,, M. Charlton,, D.J. Thomson,, W. Zhang,, B. Chen,, F.Y. Gardes,, G.T. Reed,, H.N. Rutt,: Si photonic waveguides with broken symmetries: applications from modulators to quantum simulations. Jpn. J. Appl. Phys. 59, SO0801(2020)
https://doi.org/10.35848/1347-4065/ab85ad
731 G.M. Katyba,, K.I. Zaytsev,, I.N. Dolganova,, N.V. Chernomyrdin,, V.E. Ulitko,, S.N. Rossolenko,, I.A. Shikunova,, V.N. Kurlov,: Sapphire waveguides and fibers for terahertz applications. Prog. Cryst. Growth Charact. Mater. 67(3), 100523(2021)
https://doi.org/10.1016/j.pcrysgrow.2021.100523
732 Y. Meng,, Y. Chen,, L. Lu,, Y. Ding,, A. Cusano,, J.A. Fan,, Q. Hu,, K. Wang,, Z. Xie,, Z. Liu,, Y. Yang,, Q. Liu,, M. Gong,, Q. Xiao,, S. Sun,, M. Zhang,, X. Yuan,, X. Ni,: Optical metawaveguides for integrated photonics and beyond. Light Sci. Appl. 10, 235(2021)
https://doi.org/10.1038/s41377-021-00655-x
733 S. Chen,, M.P. Zhuo,, X.D. Wang,, G.Q. Wei,, L.S. Liao,: Optical waveguides based on one-dimensional organic crystals. PhotoniX 2, 2(2021)
https://doi.org/10.1186/s43074-021-00024-2
734 D. Urbonas,, R.F. Mahrt,, T. Stöferle,: Low-loss optical waveguides made with a high-loss material. Light Sci. Appl. 10, 15(2021)
https://doi.org/10.1038/s41377-020-00454-w
735 H.M.I. Hassan,, N.F.F. Areed,, H.A. El-Mikati,, M.F.O. Hameed,, S.S.A. Obayya,: Low loss hybrid plasmonic photonic crystal waveguide for optical communication applications. Opt. Quant. Electron. 54, 431(2022)
https://doi.org/10.1007/s11082-022-03806-5
736 Y. Zejie,, H. Gao,, Y. Wang,, Y. Yue,, H.K. Tsang,, X. Sun,, D. Dai,: Fundamentals and applications of photonic waveguides with bound states in the continuum. J. Semicond. 44(10), 101301(2023)
https://doi.org/10.1088/1674-4926/44/10/101301
737 A. Messner,, D. Moor,, D. Chelladurai,, R. Svoboda,, J. Smajic,, J. Leuthold,: Plasmonic, photonic, or hybrid? Reviewing waveguide geometries for electro-optic modulators. APL Photon. 8, 100901(2023)
https://doi.org/10.1063/5.0159166
738 J. Wang,, J. Dong,: Optical waveguides and integrated optical devices for medical diagnosis, health monitoring and light therapies. Sensors 20, 3981(2020)
https://doi.org/10.3390/s20143981
739 X. Wang,, Z. Li,, S. Lei,: Soft optical waveguides for biomedical applications. Wearable devices, and soft robotics: a review. Adv. Intel. Syst. 6, 2300482(2024)
https://doi.org/10.1002/aisy.202300482
740 G. Corrielli,, A. Crespi,, R. Geremia,, R. Ramponi,, L. Sansoni,, A. Santinelli,, P. Mataloni,, F. Sciarrino,, R. Osellame,: Rotated waveplates in integrated waveguide optics. Nat. Commun. 5, 4249(2014)
https://doi.org/10.1038/ncomms5249
741 H. Takesue,, Y. Tokura,, H. Fukuda,, T. Tsuchizawa,, T. Watanabe,, K. Yamada,, S. Itabashi,: Entanglement generation using silicon wire waveguide. Appl. Phys. Lett. 91, 201108(2007)
https://doi.org/10.1063/1.2814040
742 M. Zhang,, L.T. Feng,, Z.Y. Zhou,, Y. Chen,, H. Wu,, M. Li,, S.M. Gao,, G.P. Guo,, G.C. Guo,, D.X. Dai,, X.F. Ren,: Generation of multiphoton quantum states on silicon. Light Sci. Appl. 8, 41(2019)
https://doi.org/10.1038/s41377-019-0153-y
743 X. Zhang,, B.A. Bell,, A. Mahendra,, C. Xiong,, P.H.W. Leong,, B.J. Eggleton,: Integrated silicon nitride time-bin entanglement circuits. Opt. Lett. 43, 3469–3472 (2018)
https://doi.org/10.1364/OL.43.003469
744 X. Lu,, Q. Li,, D.A. Westly,, G. Moille,, A. Singh,, V. Anant,, K. Srinivasan,: Chip-integrated visible-telecom entangled photon pair source for quantum communication. Nat. Phys. 15, 373–381 (2019)
https://doi.org/10.1038/s41567-018-0394-3
745 R. Horn,, P. Abolghasem,, B.J. Bijlani,, D. Kang,, A.S. Helmy,, G. Weihs,: Monolithic source of photon pairs. Phys. Rev. Lett. 108, 153605(2012)
https://doi.org/10.1103/PhysRevLett.108.153605
746 J. Wang,, A. Santamato,, P. Jiang,, D. Bonneau,, E. Engin,, J.W. Silverstone,, M. Lermer,, J. Beetz,, M. Kamp,, S. Höfling,, M.G. Tanner,, C.M. Natarajan,, R.H. Hadfield,, S.N. Dorenbos,, V. Zwiller,, J.L. O’Brien,, M.G. Thompson,: Gallium arsenide (GaAs) quantum photonic waveguide circuits. Opt. Commun. 327, 49–55 (2014)
https://doi.org/10.1016/j.optcom.2014.02.040
747 J.P. Sprengers,, A. Gaggero,, D. Sahin,, S. Jahanmirinejad,, G. Frucci,, F. Mattioli,, R. Leoni,, J. Beetz,, M. Lermer,, M. Kamp,, S. Höfling,, R. Sanjines,, A. Fiore,: Waveguide superconducting single photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 99, 181110(2011)
https://doi.org/10.1063/1.3657518
748 S. Tanzilli,, W. Tittel,, H. De Riedmatten,, H. Zbinden,, P. Baldi,, M. DeMicheli,, D.B. Ostrowsky,, N. Gisin,: PPLN waveguide for quantum communication. Eur. Phys. J. D 18, 155–160 (2002)
https://doi.org/10.1007/s10053-002-8817-0
749 C. Abellan,, W. Amaya,, D. Domenech,, P. Muñoz,, J. Capmany,, S. Longhi,, M.W. Mitchell,, V. Pruneri,: Quantum entropy source on an InP photonic integrated circuit for random number generation. Optica 3, 989–994 (2016)
https://doi.org/10.1364/OPTICA.3.000989
750 J. Capmany,, I. Gasulla,, D. Pérez,: Microwave photonics: the programmable processor. Nat. Photon. 10, 6–8 (2016)
https://doi.org/10.1038/nphoton.2015.254
751 K. Vandoorne,, P. Mechet,, T. Van Vaerenbergh,, M. Fiers,, G. Morthier,, D. Verstraeten,, B. Schrauwen,, J. Dambre,, P. Bienstman,: Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541(2014)
https://doi.org/10.1038/ncomms4541
752 D. Brunner,, M. C. Soriano,, G. V. der Sande,: Eds., Photonic Reservoir Computing: Optical Recurrent Neural Networks. De Gruyter (2019)
753 M. Rafayelyan,, J. Dong,, Y. Tan,, F. Krzakala,, S. Gigan,: Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction. Phys. Rev. X 10, 041037(2020)
https://doi.org/10.1117/12.2545755
754 M. Nakajima,, K. Tanaka,, T. Hashimoto,: Scalable reservoir computing on coherent linear photonic processor. Commun. Phys. 4, 20(2021)
https://doi.org/10.1038/s42005-021-00519-1
755 D. Pierangeli,, G. Marcucci,, C. Conti,: Large-scale photonic ising machine by spatial light modulation. Phys. Rev. Lett. 122, 213902(2019)
https://doi.org/10.1103/PhysRevLett.122.213902
756 Y. Okawachi,, M. Yu,, J.K. Jang,, X. Ji,, Y. Zhao,, B.Y. Kim,, M. Lipson,, A.L. Gaeta,: Demonstration of chip-based coupled degenerate optical parametric oscillators for realizing a nanophotonic spin-glass. Nat. Commun. 11, 4119(2020)
https://doi.org/10.1038/s41467-020-17919-6
757 M. Leonetti,, E. Hormann,, L. Leuzzi,, G. Parisi,, G. Ruocco,: Optical computation of a spin glass dynamics with tunable complexity. Proc. Natl. Acad. Sci. 118(21), e2015207118(2021)
https://doi.org/10.1073/pnas.2015207118
758 T. Wang,, S.Y. Ma,, L.G. Wright,, T. Onodera,, B.C. Richard,, P.L. McMahon,: An optical neural network using less than 1 photon per multiplication. Nat. Commun. 13, 123(2022)
https://doi.org/10.1038/s41467-021-27774-8
759 M.H. Yung,, X. Gao,, J. Huh,: Universal bound on sampling bosons in linear optics and its computational implications. Natl. Sci. Rev. 6(4), 719–729 (2019)
https://doi.org/10.1093/nsr/nwz048
760 D. Triggiani,, P. Facchi,, V. Tamma,: Heisenberg scaling precision in the estimation of functions of parameters in linear optical networks. Phys. Rev. A 104, 062603(2021)
https://doi.org/10.1103/PhysRevA.104.062603
761 F. Hoch,, T. Giordani,, N. Spagnolo,, A. Crespi,, R. Osellame,, F. Sciarrino,: Characterization of multimode linear optical networks. Adv. Photon. Nexus 2(1), 016007(2023)
https://doi.org/10.1117/1.APN.2.1.016007
762 M.S.S. Rahman,, X. Yang,, J. Li,, B. Bai,, A. Ozcan,: Universal linear intensity transformations using spatially incoherent diffractive processors. Light Sci. Appl. 12, 195(2023)
https://doi.org/10.1038/s41377-023-01234-y
763 M. Erhard,, M. Krenn,, A. Zeilinger,: Advances in high-dimensional quantum entanglement. Nat. Rev. Phys. 2(7), 365–381 (2020)
https://doi.org/10.1038/s42254-020-0193-5
764 D. Cozzolino,, B. Da Lio,, D. Bacco,, L.K. Oxenløwe,: Highdimensional quantum communication: benefits, progress, and future challenges. Adv. Quantum Technol. 2(12), 1900038(2019)
https://doi.org/10.1002/qute.201900038
765 P. Imany,, J.A. Jaramillo-Villegas,, M.S. Alshaykh,, J.M. Lukens,, O.D. Odele,, A.J. Moore,, D.E. Leaird,, M. Qi,, A.M. Weiner,: High-dimensional optical quantum logic in large operational spaces. npj Quantum Inf. 5(1), 59(2019)
https://doi.org/10.1038/s41534-019-0173-8
766 C. Reimer,, S. Sciara,, P. Roztocki,, M. Islam,, L. Romero Cortés,, Y. Zhang,, B. Fischer,, S. Loranger,, R. Kashyap,, A. Cino,, S.T. Chu,, B.E. Little,, D.J. Moss,, L. Caspani,, W.J. Munro,, J. Azaña,, M. Kues,, R. Morandotti,: High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148–153 (2019)
https://doi.org/10.1038/s41567-018-0347-x
767 G.B. Xavier,, G. Lima,: Quantum information processing with space-division multiplexing optical fibres. Commun. Phys. 3(1), 9(2020)
https://doi.org/10.1038/s42005-019-0269-7
768 S. Leedumrongwatthanakun,, L. Innocenti,, H. Defienne,, T. Juffmann,, A. Ferraro,, M. Paternostro,, S. Gigan,: Programmable linear quantum networks with a multimode fibre. Nat. Photon. 14(3), 139–142 (2020)
https://doi.org/10.1038/s41566-019-0553-9
769 L. Marrucci,, E. Karimi,, S. Slussarenko,, B. Piccirillo,, E. Santamato,, E. Nagali,, F. Sciarrino,: Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications. J. Opt. 13, 064001(2011)
https://doi.org/10.1088/2040-8978/13/6/064001
770 R. Loudon,: The Quantum Theory of Light. Clarendon Press, Oxford (1983)
771 E. Diamanti,, A. Leverrier,: Distributing secret keys with quantum continuous variables: principle, security and implementations. Entropy 17(9), 6072–6092 (2015)
https://doi.org/10.3390/e17096072
772 S. Rahimi-Keshari,, A.P. Lund,, T.C. Ralph,: What can quantum optics say about computational complexity theory? Phys. Rev. Lett. 114, 060501(2015)
https://doi.org/10.1103/PhysRevLett.114.060501
773 C.S. Hamilton,, R. Kruse,, L. Sansoni,, S. Barkhofen,, C. Silberhorn,, I. Jex,: Gaussian boson sampling. Phys. Rev. Lett. 119(17), 170501(2017)
https://doi.org/10.1103/PhysRevLett.119.170501
774 A.P. Lund,, A. Laing,, S. Rahimikeshari,, T. Rudolph,, J.L. Obrien,, T.C. Ralph,: Boson sampling from a Gaussian state. Phys. Rev. Lett. 113(10), 100502(2014)
https://doi.org/10.1103/PhysRevLett.113.100502
775 K. Bharti,, A. Cervera-Lierta,, T.H. Kyaw,, T. Haug,, S. Alperin-Lea,, A. Anand,, M. Degroote,, H. Heimonen,, J.S. Kottmann,, T. Menke,, W.K. Mok,: Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004(2022)
https://doi.org/10.1103/RevModPhys.94.015004
776 R. Yanagimoto,, E. Ng,, M. Jankowski,, R. Nehra,, T.P. McKenna,, T. Onodera,, L.G. Wright,, R. Hamerly,, A. Marandi,, M.M. Fejer,, H. Mabuchi,: Mesoscopic ultrafast nonlinear optics-the emergence of multimode quantum non-Gaussian physics. Optica 11, 896–918 (2024)
https://doi.org/10.1364/OPTICA.514075
777 A.A. Rakhubovsky,, D.W. Moore,, R. Filip,: Quantum non-Gaussian optomechanics and electromechanics. Prog. Quantum Electron. 93, 100495(2024)
https://doi.org/10.1016/j.pquantelec.2023.100495
778 N.C. Menicucci,, P. van Loock,, M. Gu,, C. Weedbrook,, T.C. Ralph,, M.A. Nielsen,: Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501(2006)
https://doi.org/10.1103/PhysRevLett.97.110501
779 U.L. Andersen,, J.S. Neergaard-Nielsen,, P. van Loock,, A. Furusawa,: Hybrid discrete- and continuous-variable quantum information. Nat. Phys. 11(9), 713–719 (2015)
https://doi.org/10.1038/nphys3410
780 C.R. Myers,, T.C. Ralph,: Coherent state topological cluster state production. New J. Phys. 13(11), 115015(2011)
https://doi.org/10.1088/1367-2630/13/11/115015
781 J.M. Auger,, H. Anwar,, M. Gimeno-Segovia,, T.M. Stace,, D.E. Browne,: Fault-tolerant quantum computation with non-deterministic entangling gates. Phys. Rev. A 97(3), 5–9 (2018)
https://doi.org/10.1103/PhysRevA.97.030301
782 R.N. Alexander,, P. Wang,, N. Sridhar,, M. Chen,, O. Pfister,, N.C. Menicucci,: One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator. Phys. Rev. A 94, 032327(2016)
https://doi.org/10.1103/PhysRevA.94.032327
783 M.V. Larsen,, J.S. Neergaard-Nielsen,, U.L. Andersen,: Architecture and noise analysis of continuous-variable quantum gates using two-dimensional cluster states. Phys. Rev. A 102, 042608(2020)
https://doi.org/10.1103/PhysRevA.102.042608
784 R.N. Alexander,, S. Yokoyama,, A. Furusawa,, N.C. Menicucci,: Universal quantum computation with temporal-mode bi-layer square lattices. Phys. Rev. A 97, 032302(2018)
https://doi.org/10.1103/PhysRevA.97.032302
785 P. Wang,, M. Chen,, N.C. Menicucci,, O. Pfister,: Weaving quantum optical frequency combs into continuous-variable hyper-cubic cluster states. Phys. Rev. A 90(3), 032325(2014)
https://doi.org/10.1103/PhysRevA.90.032325
786 B.H. Wu,, R.N. Alexander,, S. Liu,, Z. Zhang,: Quantum computing with multi-dimensional continuous-variable cluster states in a scalable photonic platform. Phys. Rev. Res. 2(2), 023138(2020)
https://doi.org/10.1103/PhysRevResearch.2.023138
787 K. Fukui,, W. Asavanant,, A. Furusawa,: Temporal-mode continuous- variable 3-dimensional cluster state for topologically-protected measurement-based quantum computation. Phys. Rev. A 102, 032614(2020)
https://doi.org/10.1103/PhysRevA.102.032614
788 A.P. Lund,, T.C. Ralph,, H.L. Haselgrove,: Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503(2008)
https://doi.org/10.1103/PhysRevLett.100.030503
789 T. Rudolph,: Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2(3), 030901(2017)
https://doi.org/10.1063/1.4976737
790 C.R. Doerr,, K. Okamoto,: Advances in silica planar lightwave circuits. J. Lightw. Technol. 24, 4763–4789 (2006)
https://doi.org/10.1109/JLT.2006.885255
791 L.A. Coldren,, S.C. Nicholes,, L. Johansson,, S. Ristic,, R.S. Guzzon,, E.J. Norberg,, U. Krishnamachari,: High performance InP-based photonic ICs-A tutorial. J. Lightw. Technol 29, 554–570 (2011)
https://doi.org/10.1109/JLT.2010.2100807
792 R. Soref,: The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006)
https://doi.org/10.1109/JSTQE.2006.883151
793 W. Bogaerts,: Design challenges in silicon photonics. IEEE J. Sel. Top. Quantum Electron. 20, 8202008(2014)
794 W. Bogaerts,, R. Baets,, P. Dumon,, V. Wiaux,, S. Beckx,, D. Taillaert,, B. Luyssaert,, J. Van Campenhout,, P. Bienstman,, D. Van Thourhout,: Nanophotonic waveguides in silicon-oninsulator fabricated with CMOS technology. J. Lightw. Technol. 23, 401–412 (2005)
795 M.K. Smit,, X. Leijtens,, H. Ambrosius,, E. Bente,, J. van der Tol,, B. Smalbrugge,, T. de Vries,, E.J. Geluk,, J. Bolk,, R. van Veldhoven,, L. Augustin,, P. Thijs,, D. D’Agostino,, H. Rabbani,, K. Lawniczuk,, S. Stopinski,, S. Tahvili,, A. Corradi,, E. Kleijn,, D. Dzibrou,, M. Felicetti,, E. Bitincka,, V. Moskalenko,, J. Zhao,, R. Santos,, G. Gilardi,, W. Yao,, K. Williams,, P. Stabile,, P. Kuindersma,, J. Pello,, S. Bhat,, Y. Jiao,, D. Heiss,, G. Roelkens,, M. Wale,, P. Firth,, F. Soares,, N. Grote,, M. Schell,, H. Debregeas,, M. Achouche,, J.L. Gentner,, A. Bakker,, T. Korthorst,, D. Gallagher,, A. Dabbs,, A. Melloni,, F. Morichetti,, D. Melati,, A. Wonfor,, R. Penty,, R. Broeke,, B. Musk,, D. Robbins,: An introduction to InP-based generic integration technology. Semicond. Sci. Technol. 29, 083001(2014)
https://doi.org/10.1088/0268-1242/29/8/083001
796 A. Leinse,, R.G. Heideman,, M. Hoekman,, F. Schreuder,, F. Falke,, C.G.H. Roeloffzen,, L. Zhuang,, M. Burla,, D. Marpaung,, D.H. Geuzebroek,, R. Dekker,, E.J. Klein,, P.W.L. van Dijk,, R.M. Oldenbeuving,: TriPleX waveguide platform: low-loss technology over a wide wavelength range. Proc. SPIE 8767, 87670E (2013)
https://doi.org/10.1117/12.2020574
797 F. Kish,, R. Nagarajan,, D. Welch,, P. Evans,, J. Rossi,, J. Pleumeekers,, A. Dentai,, M. Kato,, S. Corzine,, R. Muthiah,, M. Ziari,, R. Schneider,, M. Reffle,, T. Butrie,, D. Lambert,, M. Missey,, V. Lal,, M. Fisher,, S. Murthy,, R. Salvatore,, S. Demars,, A. James,, C. Joyner,: From visible light-emitting diodes to large-scale III-V photonic integrated circuits. Proc. IEEE 101, 2255–2270 (2013)
https://doi.org/10.1109/JPROC.2013.2275018
798 M.J.R. Heck,, J.F. Bauters,, M.L. Davenport,, J.K. Doylend,, S. Jain,, G. Kurczveil,, S. Srinivasan,, Y. Tang,, J.E. Bowers,: Hybrid silicon photonic integrated circuit technology. IEEE J. Sel. Top. Quantum Electron. 19, 6100117(2013)
https://doi.org/10.1109/JSTQE.2012.2235413
799 W. Sacher,, Y. Huang,, G.Q. Lo,, J.K.S. Poon,: Multilayer silicon nitride-on-silicon integrated photonic platforms and devices. J. Lightw. Technol. 33, 901–910 (2015)
https://doi.org/10.1109/JLT.2015.2392784
800 X. Chen,, M.M. Milosevic,, S. Stankovic,, S. Reynolds,, T.D. Bucio,, K. Li,, D.J. Thomson,, F. Gardes,, G.T. Reed,: The emergence of silicon photonics as a flexible technology platform. Proc. IEEE 106, 2101–2116 (2018)
https://doi.org/10.1109/JPROC.2018.2854372
801 M. Smit,, K. Williams,, J. van der Tol,: Past, present, and future of InP-based photonic integration. APL Photon. 4, 050901(2019)
https://doi.org/10.1063/1.5087862
802 D.A.B. Miller,: Self-aligning universal beam coupler. Opt. Express 21, 6360–6370 (2013)
https://doi.org/10.1364/OE.21.006360
803 S. Pai,, I.A.D. Williamson,, T.W. Hughes,, M. Minkov,, D.A.B. Miller,: Parallel programming of an arbitrary feedforward photonic network. IEEE J. Sel. Top. Quantum Electron. 25, 6100813(2020)
804 W. Bogaerts,, D. Pérez,, J. Capmany,, D.A.B. Miller,, J. Poon,, D. Englund,, F. Morichetti,, A. Melloni,: Programmable photonic circuits. Nature 586, 207–216 (2020)
https://doi.org/10.1038/s41586-020-2764-0
805 F. Amanti,, G. Andrini,, F. Armani,, F. Barbato,, V. Bellani,, V. Bonaiuto,, S. Cammarata,, M. Campostrini,, T.H. Dao,, F. De Matteis,, V. Demontis,, S. Donati,, G. Di Giuseppe,, S. Ditalia Tchernij,, A. Fontana,, J. Forneris,, L. Frontini,, R. Gunnella,, S. Iadanza,, A.E. Kaplan,, C. Lacava,, V. Liberali,, L. Martini,, F. Marzioni,, L. Morescalchi,, E. Pedreschi,, P. Piergentili,, D. Prete,, V. Rigato,, C. Roncolato,, F. Rossella,, M. Salvato,, F. Sargeni,, J. Shojaii,, F. Spinella,, A. Stabile,, A. Toncelli,, V. Vitali,: Integrated photonic passive building blocks on siliconon- insulator platform. Photonics 11(6), 494(2024)
https://doi.org/10.3390/photonics11060494
806 J. Capmany,, D. Perez,: Programmable Integrated Photonics. Oxford University Press (2020)
807 D. Perez-Lopez,: Programmable integrated silicon photonics waveguide meshes: optimized designs and control algorithms. IEEE J. Sel. Top. Quantum Electron. 26, 8301312(2020)
https://doi.org/10.1109/JSTQE.2019.2948048
808 N.C. Harris,, J. Carolan,, D. Bunandar,, M. Prabhu,, M. Hochberg,, T. Baehr-Jones,, M.L. Fanto,, A.M. Smith,, C.C. Tison,, P.M. Alsing,, D. Englund,: Linear programmable nanophotonic processors. Optica 5, 1623–1631 (2018)
https://doi.org/10.1364/OPTICA.5.001623
809 N.C. Harris,, D. Bunandar,, M. Pant,, G.R. Steinbrecher,, J. Mower,, M. Prabhu,, T. Baehr-Jones,, M. Hochberg,, D. Englund,: Large-scale quantum photonic circuits in silicon. Nanophotonics 5, 456–468 (2016)
https://doi.org/10.1515/nanoph-2015-0146
810 J. Notaros,, J. Mower,, M. Heuck,, C. Lupo,, N.C. Harris,, G.R. Steinbrecher,, D. Bunandar,, T. Baehr-Jones,, M. Hochberg,, S. Lloyd,, D. Englund,: Programmable dispersion on a photonic integrated circuit for classical and quantum applications. Opt. Express 25, 21275–21285 (2017)
https://doi.org/10.1364/OE.25.021275
811 Ipronic Programmable Photonics. Programmable Photonics: What, why and when? Available at the website of ipronics.com, accessed, White paper (2023)
812 G. Micó., L. Bru,, D. Pastor,, D. Pérez,, P. Munoz,: C-band linear propagation properties for a 300 nm film height Silicon Nitride photonics platform. In: European Conference on Integrated Optics 2017: Eindhoven, Netherlands (2017)
813 T. Giordani,, F. Hoch,, G. Carvacho,, N. Spagnolo,, F. Sciarrino,: Integrated photonics in quantum technologies. Riv. Nuovo Cim. 46, 71–103 (2023)
https://doi.org/10.1007/s40766-023-00040-x
814 P.L. Mennea,, W.R. Clements,, D.H. Smith,, J.C. Gates,, B.J. Metcalf,, R.H.S. Bannerman,, R. Burgwal,, J.J. Renema,, W.S. Kolthammer,, I.A. Walmsley,, P.G.R. Smith,: Modular linear optical circuits. Optica 5, 1087–1090 (2018)
https://doi.org/10.1364/OPTICA.5.001087
815 C. Taballione,, T.A.W. Wolterink,, A. Eckstein,, J. Lugani,, R. Grootjans,: 8 × 8 programmable quantum photonic processor based on silicon nitride waveguides. In: Frontiers in Optics, JTu3A.58, Optical Society of America (2018)
https://doi.org/10.1364/FIO.2018.JTu3A.58
816 Y. Xie,, Z. Geng,, L. Zhuang,, M. Burla,, C. Taddei,, M. Hoekman,, A. Leinse,, C.G.H. Roeloffzen,, K.J. Boller,, A.J. Lowery,: Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity. Nanophotonics 7, 421–454 (2017)
https://doi.org/10.1515/nanoph-2017-0077
817 T.J. Hall,, M. Hasan,: Universal discrete Fourier optics RF photonic integrated circuit architecture. Opt. Express 24, 7600–7610 (2016)
https://doi.org/10.1364/OE.24.007600
818 I.V. Dyakonov,, I.A. Pogorelov,, I.B. Bobrov,, A.A. Kalinkin,, S.S. Straupe,, S.P. Kulik,, P.V. Dyakonov,, S.A. Evlashin,: Reconfigurable photonics on a glass chip. Phys. Rev. Appl. 10, 044048(2018)
https://doi.org/10.1103/PhysRevApplied.10.044048
819 F. Shokraneh,, S. Geoffroy-Gagnon,, M.S. Nezami,, O. Liboiron-Ladouceur,: A single layer neural network implemented by a 4 × 4 MZI-based optical processor. IEEE Photon. J. 11, 4501612(2019)
https://doi.org/10.1109/JPHOT.2019.2952562
820 L. Lu,, L. Zhou,, J. Chen,: Programmable SCOW mesh silicon photonic processor for linear unitary operator. Micromachines 10, 646(2019)
https://doi.org/10.3390/mi10100646
821 C. Schaeff,, R. Polster,, M. Huber,, S. Ramelow,, A. Zeilinger,: Experimental access to higher-dimensional entangled quantum systems using integrated optics. Optica 2, 523–529 (2015)
https://doi.org/10.1364/OPTICA.2.000523
822 D.A.B. Miller,: Waves, modes, communications, and optics: a tutorial. Adv. Opt. Photon. 11, 679(2019)
https://doi.org/10.1364/AOP.11.000679
823 A. Annoni,, E. Guglielmi,, M. Carminati,, G. Ferrari,, M. Sampietro,, D.A.B. Miller,, A. Melloni,, F. Morichetti,: Unscrambling light-automatically undoing strong mixing between modes. Light Sci. Appl. 6, e17110(2017)
https://doi.org/10.1038/lsa.2017.110
824 W. Bogaerts,, A. Rahim,: Programmable photonics: an opportunity for an accessible large-volume PIC ecosystem. IEEE J. Sel. Top. Quantum Electron. 26, 1–17 (2020)
https://doi.org/10.1109/JSTQE.2020.2982980
825 D. Pérez-López,, A. López,, P. DasMahapatra,, J. Capmany,: Multipurpose self-configuration of programmable photonic circuits. Nat. Commun. 11, 6359(2020)
https://doi.org/10.1038/s41467-020-19608-w
826 N. Peters,, J. Altepeter,, E. Jeffrey,, D. Branning,, P. Kwiat,: Precise creation, characterization, and manipulation of single optical qubits. Quantum Inf. Comput. 3, 503(2003)
https://doi.org/10.26421/QIC3.s-4
827 W. Luo,, L. Cao,, Y. Shi,, L. Wan,, H. Zhang,, S. Li,, G. Chen,, Y. Li,, S. Li,, Y. Wang,, S. Sun,, M.F. Karim,, H. Cai,, L.C. Kwek,, A.Q. Liu,: Recent progress in quantum photonic chips for quantum communication and internet. Light Sci. Appl. 12, 175(2023)
https://doi.org/10.1038/s41377-023-01173-8
828 W.Y. Hwang,: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901(2003)
https://doi.org/10.1103/PhysRevLett.91.057901
829 H.K. Lo,, X.F. Ma,, K. Chen,: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504(2005)
https://doi.org/10.1103/PhysRevLett.94.230504
830 X.B. Wang,: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503(2005)
https://doi.org/10.1103/PhysRevLett.94.230503
831 H. Semenenko,, P. Sibson,, A. Hart,, M.G. Thompson,, J.G. Rarity,, C. Erven,: Chip-based measurement-device-independent quantum key distribution. Optica 7, 238–242 (2020)
https://doi.org/10.1364/OPTICA.379679
832 C. Agnesi,, B. Da Lio,, D. Cozzolino,, L. Cardi,, B. Ben Bakir,, K. Hassan,, A. Della Frera,, A. Ruggeri,, A. Giudice,, G. Vallone,, P. Villoresi,, A. Tosi,, K. Rottwitt,, Y. Ding,, D. Bacco,: Hong-Ou-Mandel interference between independent III-V on silicon waveguide integrated lasers. Opt. Lett. 44, 271–274 (2019)
https://doi.org/10.1364/OL.44.000271
833 Y.J. Ma,, Y. Liu,, H. Guan,, A. Gazman,, Q. Li,, R. Ding,, Y. Li,, K. Bergman,, T. Baehr-Jones,, M. Hochberg,: Symmetrical polarization splitter/rotator design and application in a polarization insensitive WDM receiver. Opt. Express 23, 16052–16062 (2015)
https://doi.org/10.1364/OE.23.016052
834 N.C. Harris,, Y. Ma,, J. Mower,, T. Baehr-Jones,, D. Englund,, M. Hochberg,, C. Galland,: Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express 22, 10487–10493(2014)
https://doi.org/10.1364/OE.22.010487
835 P.O. Weigel,, J. Zhao,, K. Fang,, H. Al-Rubaye,, D. Trotter,, D. Hood,, J. Mudrick,, C. Dallo,, A.T. Pomerene,, A.L. Starbuck,, C.T. DeRose,, A.L. Lentine,, G. Rebeiz,, S. Mookherjea,: Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation band-width. Opt. Express 26, 23728–23739 (2018)
https://doi.org/10.1364/OE.26.023728
836 P.P. Xu,, J. Zheng,, J.K. Doylend,, A. Majumdar,: Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photon. 6, 553–557 (2019)
https://doi.org/10.1021/acsphotonics.8b01628
837 A. Peruzzo,, A. Laing,, A. Politi,, T. Rudolph,, J.L. O’Brien,: Multimode quantum interference of photons in multiport integrated devices. Nat. Commun. 2, 224(2011)
https://doi.org/10.1038/ncomms1228
838 A.W. Elshaari,, I.E. Zadeh,, A. Fognini,, M.E. Reimer,, D. Dalacu,, P.J. Poole,, V. Zwiller,, K.D. Jöns,: On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits. Nat. Commun. 8, 379(2017)
https://doi.org/10.1038/s41467-017-00486-8
839 S.H. Hong,, L. Zhang,, Y. Wang,, M. Zhang,, Y. Xie,, D. Dai,: Ultralow-loss compact silicon photonic waveguide spirals and delay lines. Photon. Res. 10, 1–7 (2022)
https://doi.org/10.1364/PRJ.437726
840 M. He,, M. Xu,, Y. Ren,, J. Jian,, Z. Ruan,, Y. Xu,, S. Gao,, S. Sun,, X. Wen,, L. Zhou,, L. Liu,, C. Guo,, H. Chen,, S. Yu,, L. Liu,, X. Cai,: High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond. Nat. Photon. 13, 359–364 (2019)
https://doi.org/10.1038/s41566-019-0378-6
841 B.J. Metcalf,, J.B. Spring,, P.C. Humphreys,, N. Thomas-Peter,, M. Barbieri,, W.S. Kolthammer,, X.M. Jin,, N.K. Langford,, D. Kundys,, J.C. Gates,, B.J. Smith,, P.G.R. Smith,, I.A. Walmsley,: Quantum teleportation on a photonic chip. Nat. Photon. 8, 770–774 (2014)
https://doi.org/10.1038/nphoton.2014.217
842 G. Zhang,, J.Y. Haw,, H. Cai,, F. Xu,, S. Assad,, J.F. Fitzsimons,, X. Zhou,, Y. Zhang,, S. Yu,, J. Wu,, W. Ser,, L.C. Kwek,, A.Q. Liu,: An integrated silicon photonic chip platform for continuous- variable quantum key distribution. Nat. Photon. 13(12), 839–842 (2019)
https://doi.org/10.1038/s41566-019-0504-5
843 K.J. Wei,, W. Li,, H. Tan,, Y. Li,, H. Min,, W.J. Zhang,, H. Li,, L. You,, Z. Wang,, X. Jiang,, T.Y. Chen,, S.K. Liao,, C.Z. Peng,, F. Xu,, J.W. Pan,: High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X 10, 031030(2020)
https://doi.org/10.1103/PhysRevX.10.031030
844 L. Cao,, W. Luo,, Y.X. Wang,, J. Zou,, R.D. Yan,, H. Cai,, Y. Zhang,, X.L. Hu,, C. Jiang,, W.J. Fan,, X.Q. Zhou,, B. Dong,, X.S. Luo,, G.Q. Lo,, Y.X. Wang,, Z.W. Xu,, S.H. Sun,, X.B. Wang,, Y.L. Hao,, Y.F. Jin,, D.L. Kwong,, L.C. Kwek,, A.Q. Liu,: Chipbased measurement-device-independent quantum key distribution using integrated silicon photonic systems. Phys. Rev. Appl. 14, 011001(2020)
https://doi.org/10.1103/PhysRevApplied.14.011001
845 R. Marchetti,, C. Lacava,, L. Carroll,, K. Gradkowski,, P. Minzioni,: Coupling strategies for silicon photonics integrated chips. Photon. Res. 7, 201–239 (2019)
https://doi.org/10.1364/PRJ.7.000201
846 J. Cardenas,, C.B. Poitras,, K. Luke,, L.W. Luo,, P.A. Morton,, M. Lipson,: High coupling efficiency etched facet tapers in silicon waveguides. IEEE Photon. Technol. Lett. 26, 2380–2382 (2014)
https://doi.org/10.1109/LPT.2014.2357177
847 P. Dirac,: The Principles of Quantum Mechanics. Clarendon Press, Oxford (1930)
848 A. Kržič,, S. Sharma,, C. Spiess,, U. Chandrashekara,, S. Töpfer,, G. Sauer,, L. del Campo,, T. Kopf,, S. Petscharnig,, T. Grafenauer,, R. Lieger,, B. Ömer,, C. Pacher,, R. Berlich,, T. Peschel,, C. Damm,, S. Risse,, M. Goy,, D. Rieländer,, A. Tünnermann,, F. Steinlechner,: Towards metropolitan free-space quantum networks. npj Quantum Inf. 9, 95(2023)
https://doi.org/10.1038/s41534-023-00754-0
849 C. H. Bennett,, G. Brassard,: Quantum cryptography: public key distribution and coin tossing. In: Proc. International Conference on Computers, Systems ∓ Signal Processing. IEEE, Bangalore, 175–179 (1984)
850 C.H. Bennett,, F. Bessette,, G. Brassard,, L. Salvail,, J. Smolin,: Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992)
https://doi.org/10.1007/BF00191318
851 P.W. Shor,, J. Preskill,: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)
https://doi.org/10.1103/PhysRevLett.85.441
852 Y. Ding,, D. Bacco,, K. Dalgaard,, X. Cai,, X. Zhou,, K. Rottwitt,, L. Oxenlwe,: High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quantum Inf. 3, 25(2017)
https://doi.org/10.1038/s41534-017-0026-2
853 E. Diamanti,, H.K. Lo,, B. Qi,, Z. Yuan,: Practical challenges in quantum key distribution. npj Quantum Inf. 2, 16025(2016)
https://doi.org/10.1038/npjqi.2016.25
854 M. Peev,, C. Pacher,, R. Alléaume,, C. Barreiro,, J. Bouda,, W. Boxleitner,, T. Debuisschert,, E. Diamanti,, M. Dianati,, J.F. Dynes,, S. Fasel,, S. Fossier,, M. Fürst,, J.D. Gautier,, O. Gay,, N. Gisin,, P. Grangier,, A. Happe,, Y. Hasani,, M. Hentschel,, H. Hübel,, G. Humer,, T. Länger,, M. Legré,, R. Lieger,, J. Lodewyck,, T. Lorünser,, N. Lütkenhaus,, A. Marhold,, T. Matyus,, O. Maurhart,, L. Monat,, S. Nauerth,, J.B. Page,, A. Poppe,, E. Querasser,, G. Ribordy,, S. Robyr,, L. Salvail,, A.W. Sharpe,, A.J. Shields,, D. Stucki,, M. Suda,, C. Tamas,, T. Themel,, R.T. Thew,, Y. Thoma,, A. Treiber,, P. Trinkler,, R. Tualle-Brouri,, F. Vannel,, N. Walenta,, H. Weier,, H. Weinfurter,, I. Wimberger,, Z.L. Yuan,, H. Zbinden,, A. Zeilinger,: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001(2009)
https://doi.org/10.1088/1367-2630/11/7/075001
855 D. Stucki,, M. Legré,, F. Buntschu,, B. Clausen,, N. Felber,, N. Gisin,, L. Henzen,, P. Junod,, G. Litzistorf,, P. Monbaron,, L. Monat,, J.B. Page,, D. Perroud,, G. Ribordy,, A. Rochas,, S. Robyr,, J. Tavares,, R. Thew,, P. Trinkler,, S. Ventura,, R. Voirol,, N. Walenta,, H. Zbinden,: Long-term performance of the SwissQuantum quantum key distribution network in a field environment. New J. Phys. 13, 123001(2011)
https://doi.org/10.1088/1367-2630/13/12/123001
856 M. Avesani,, G. Foletto,, M. Padovan,, L. Calderaro,, C. Agnesi,, E. Bazzani,, F. Berra,, T. Bertapelle,, F. Picciariello,, F.B.L. Santagiustina,, D. Scalcon,, A. Scriminich,, A. Stanco,, F. Vedovato,, G. Vallone,, P. Villoresi,: Deployment-ready quantum key distribution over a classical network infrastructure in Padua. J. Lightwave Technol. 40, 1658–1663 (2022)
https://doi.org/10.1109/JLT.2021.3130447
857 M. Sasaki,, M. Fujiwara,, H. Ishizuka,, W. Klaus,, K. Wakui,, M. Takeoka,, S. Miki,, T. Yamashita,, Z. Wang,, A. Tanaka,, K. Yoshino,, Y. Nambu,, S. Takahashi,, A. Tajima,, A. Tomita,, T. Domeki,, T. Hasegawa,, Y. Sakai,, H. Kobayashi,, T. Asai,, K. Shimizu,, T. Tokura,, T. Tsurumaru,, M. Matsui,, T. Honjo,, K. Tamaki,, H. Takesue,, Y. Tokura,, J.F. Dynes,, A.R. Dixon,, A.W. Sharpe,, Z.L. Yuan,, A.J. Shields,, S. Uchikoga,, M. Legré,, S. Robyr,, P. Trinkler,, L. Monat,, J.B. Page,, G. Ribordy,, A. Poppe,, A. Allacher,, O. Maurhart,, T. Länger,, M. Peev,, A. Zeilinger,: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387–10409 (2011)
https://doi.org/10.1364/OE.19.010387
858 T.Y. Chen,, H. Liang,, Y. Liu,, W.Q. Cai,, L. Ju,, W.Y. Liu,, J. Wang,, H. Yin,, K. Chen,, Z.B. Chen,, C.Z. Peng,, J.W. Pan,: Field test of a practical secure communication network with decoy-state quantum cryptography. Opt. Express 17, 6540–6549(2009)
https://doi.org/10.1364/OE.17.006540
859 S. Wang,, W. Chen,, Z.Q. Yin,, H.W. Li,, D.Y. He,, Y.H. Li,, Z. Zhou,, X.T. Song,, F.Y. Li,, D. Wang,, H. Chen,, Y.G. Han,, J.Z. Huang,, J.F. Guo,, P.L. Hao,, M. Li,, C.M. Zhang,, D. Liu,, W.Y. Liang,, C.H. Miao,, P. Wu,, G.C. Guo,, Z.F. Han,: Field and long-term demonstration of a wide area quantum key distribution network. Opt. Express 22, 21739–21756 (2014)
https://doi.org/10.1364/OE.22.021739
860 J.F. Dynes,, A. Wonfor,, W.S. Tam,, A.W. Sharpe,, A.J. Shields,: Cambridge quantum network. npj Quantum Inf. 5, 101(2019)
https://doi.org/10.1038/s41534-019-0221-4
861 L.J. Wang,, K.Y. Zhang,, J.Y. Wang,, J. Cheng,, Y.H. Yang,, S.B. Tang,, D. Yan,, Y.L. Tang,, Z. Liu,, Y. Yu,: Experimental authentication of quantum key distribution with post-quantum cryptography. npj Quantum Inf. 7, 67(2021)
https://doi.org/10.1038/s41534-021-00400-7
862 C.H. Bennett,, G. Brassard,, C. Crépeau,, R. Jozsa,, A. Peres,, W.K. Wootters,: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
863 D. Bouwmeester,, J.W. Pan,, K. Mattle,, M. Eibl,, H. Weinfurter,, A. Zeilinger,: Experimental quantum teleportation. Nature 390, 575–579 (1997)
https://doi.org/10.1038/37539
864 S. Wehner,, D. Elkouss,, R. Hanson,: Quantum internet: a vision for the road ahead. Science 362, eaam9288(2018)
https://doi.org/10.1126/science.aam9288
865 G.L. Long,, X.S. Liu,: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302(2002)
https://doi.org/10.1103/PhysRevA.65.032302
866 F.G. Deng,, G.L. Long,, X.S. Liu,: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317(2003)
https://doi.org/10.1103/PhysRevA.68.042317
867 F.G. Deng,, G.L. Long,: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319(2004)
https://doi.org/10.1103/PhysRevA.69.052319
868 J.Y. Hu,, B. Yu,, M.Y. Jing,, L.T. Xiao,, S.T. Jia,, G.Q. Qin,, G.L. Long,: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144(2016)
https://doi.org/10.1038/lsa.2016.144
869 W. Zhang,, D.S. Ding,, Y.B. Sheng,, L. Zhou,, B.S. Shi,, G.C. Guo,: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501(2017)
https://doi.org/10.1103/PhysRevLett.118.220501
870 F. Zhu,, W. Zhang,, Y. Sheng,, Y. Huang,: Experimental longdistance quantum secure direct communication. Sci. Bull. 62, 1519–1524 (2017)
https://doi.org/10.1016/j.scib.2017.10.023
871 R.Y. Qi,, Z. Sun,, Z. Lin,, P. Niu,, W. Hao,, L. Song,, Q. Huang,, J. Gao,, L. Yin,, G.L. Long,: Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl. 8, 22(2019)
https://doi.org/10.1038/s41377-019-0132-3
872 H.R. Zhang,, Z. Sun,, R. Qi,, L. Yin,, G.L. Long,, J. Lu,: Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl. 11, 83(2022)
https://doi.org/10.1038/s41377-022-00769-w
873 Z.T. Qi,, Y. Li,, Y. Huang,, J. Feng,, Y. Zheng,, X. Chen,: A 15-user quantum secure direct communication network. Light Sci. Appl. 10, 183(2021)
https://doi.org/10.1038/s41377-021-00634-2
874 G.L. Long,, D. Pan,, Y.B. Sheng,, Q. Xue,, J. Lu,, L. Hanzo,: An evolutionary pathway for the quantum internet relying on secure classical repeaters. IEEE Netw. 36, 82–88 (2022)
https://doi.org/10.1109/MNET.108.2100375
875 A. Orieux,, E. Diamanti,: Recent advances on integrated quantum communications. J. Opt. 18, 083002(2016)
https://doi.org/10.1088/2040-8978/18/8/083002
876 M. Żukowski,, A. Zeilinger,, M. Horne,, H. Weinfurter,: Quest for GHZ states. Acta Phys. Pol. 93, 187–95 (1998)
https://doi.org/10.12693/APhysPolA.93.187
877 M. Hillery,, V. Bužek,, A. Berthiaume,: Quantum secret sharing. Phys. Rev. A 59, 1829(1999)
https://doi.org/10.1103/PhysRevA.59.1829
878 C.H. Bennett,, G. Brassard,, N.D. Mermin,: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557(1992)
https://doi.org/10.1103/PhysRevLett.68.557
879 Y. Hatakeyama,, A. Mizutani,, G. Kato,, N. Imoto,, K. Tamaki,: Differential-phase-shift quantum-key-distribution protocol with a small number of random delays. Phys. Rev. A 95, 042301(2017)
https://doi.org/10.1103/PhysRevA.95.042301
880 M. Lucamarini,, Z.L. Yuan,, J.F. Dynes,, A.J. Shields,: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557, 400(2018)
https://doi.org/10.1038/s41586-018-0066-6
881 X.B. Wang,, Z.W. Yu,, X.L. Hu,: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98, 062323(2018)
https://doi.org/10.1103/PhysRevA.98.062323
882 Y. Liu,, W.J. Zhang,, C. Jiang,, J.P. Chen,, C. Zhang,, W.X. Pan,, D. Ma,, H. Dong,, J.M. Xiong,, C.J. Zhang,, H. Li,, R.C. Wang,, J. Wu,, T.Y. Chen,, L. You,, X.B. Wang,, Q. Zhang,, J.W. Pan,: Experimental twin-field quantum key distribution over 1000 km fiber distance. Phys. Rev. Lett. 130, 210801(2023)
https://doi.org/10.1103/PhysRevLett.130.210801
883 F. Grosshans,, P. Grangier,: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902(2002)
https://doi.org/10.1103/PhysRevLett.88.057902
884 F. Grosshans,, G. Van Assche,, J. Wenger,, R. Brouri,, N.J. Cerf,, P. Grangier,: Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238–241 (2003)
https://doi.org/10.1038/nature01289
885 M. Ziebell,, M. Persechino,, N. Harris,, C. Galland,, D. Marris- Morini,, L. Vivien,, E. Diamanti,, P. Grangier,: Towards onchip continuous-variable quantum key distribution. In: Proc. European Conference on Lasers and Electro-Optics-European Quantum Electronics Conference 2015. Optica Publishing Group, Munich (2015)
886 D.M. Greenberger,, M.A. Horne,, A. Zeilinger,: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s theorem, quantum theory and conceptions of the universe, pp. 69–72. Kluwer Academic, Dordrecht (1989)
https://doi.org/10.1007/978-94-017-0849-4_10
887 Y. Zhao,, R. Zhang,, W. Chen,, J. Wang, X. B., Hu,: Creation of Greenberger-Horne-Zeilinger states with thousands of atoms by entanglement amplification. npj Quantum Inf. 7, 24(2021)
https://doi.org/10.1038/s41534-021-00364-8
888 P. Sibson,, J.E. Kennard,, S. Stanisic,, C. Erven,, J.L. O’Brien,, M.G. Thompson,: Integrated silicon photonics for high-speed quantum key distribution. Optica 4, 172–177 (2017)
https://doi.org/10.1364/OPTICA.4.000172
889 N. Gisin,, G. Ribordy,, H. Zbinden,, D. Stucki,, N. Brunner,, V. Scarani,: Towards practical and fast quantum cryptography. arXiv preprint arXiv: quant- ph/0411022(2004)
890 J.C. Dai,, L. Zhang,, X. Fu,, X. Zheng,, L. Yang,: Pass-block architecture for distributed-phase-reference quantum key distribution using silicon photonics. Opt. Lett. 45, 2014–2017 (2020)
https://doi.org/10.1364/OL.388654
891 R. Sax,, A. Boaron,, G. Boso,, S. Atzeni,, A. Crespi,, F. Grünenfelder,, D. Rusca,, A. Al-Saadi,, D. Bronzi,, S. Kupijai,, H. Rhee,, R. Osellame,, H. Zbinden,: High-speed integrated QKD system. Photon. Res. 11(6), 1007–1014 (2023)
https://doi.org/10.1364/PRJ.481475
892 R.J. Collins,, R. Amiri,, M. Fujiwara,, T. Honjo,, K. Shimizu,, K. Tamaki,, M. Takeoka,, E. Andersson,, G.S. Buller,, M. Sasaki,: Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system. Opt. Lett. 41, 4883–4886 (2016)
https://doi.org/10.1364/OL.41.004883
893 Q.C. Sun,, Y.L. Mao,, S.J. Chen,, W. Zhang,, Y.F. Jiang,, Y.B. Zhang,, W.J. Zhang,, S. Miki,, T. Yamashita,, H. Terai,, X. Jiang,: Entanglement swapping with independent sources over an optical- fiber network. Phys. Rev. A 95, 032306(2017)
https://doi.org/10.1103/PhysRevA.95.032306
894 T. Schmitt-Manderbach,, H. Weier,, M. Fürst,, R. Ursin,, F. Tiefenbacher,, T. Scheidl,, J. Perdigues,, Z. Sodnik,, C. Kurtsiefer,, J.G. Rarity,, A. Zeilinger,: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504(2007)
https://doi.org/10.1103/PhysRevLett.98.010504
895 S.H. Sun,, G.Z. Tang,, C.Y. Li,, L.M. Liang,: Experimental demonstration of passive-decoy-state quantum key distribution with two independent lasers. Phys. Rev. A 94, 032324(2016)
https://doi.org/10.1103/PhysRevA.94.032324
896 G. Cañas,, N. Vera,, J. Cariñe,, P. González,, J. Cardenas,, P.W.R. Connolly,, A. Przysiezna,, E.S. Gómez,, M. Figueroa,, G. Vallone,, P. Villoresi,, T. Ferreira da Silva,, G.B. Xavier,, G. Lima,: High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers. Phys. Rev. A 96, 022317(2017)
https://doi.org/10.1103/PhysRevA.96.022317
897 H.K. Lo,, M. Curty,, K. Tamaki,: Secure quantum key distribution. Nat. Photon. 8, 595(2014)
https://doi.org/10.1038/nphoton.2014.149
898 D. Moskovich,: An overview of the state of the art for practical quantum key distribution. arXive preprint arXiv: 1504. 05471 v4 [quant-ph] (2015)
899 D. Bunandar,, A. Lentine,, C. Lee,, H. Cai,, C.M. Long,, N. Boynton,, N. Martinez,, C. DeRose,, C. Chen,, M. Grein,, D. Trotter,, A. Starbuck,, A. Pomerene,, S. Hamilton,, F.N.C. Wong,, R. Camacho,, P. Davids,, J. Urayama,, D. Englund,: Metropolitan quantum key distribution with silicon photonics. Phys. Rev. X 8, 021009(2018)
https://doi.org/10.1103/PhysRevX.8.021009
900 T.K. Paraïso,, I. De Marco,, T. Roger,, D.G. Marangon,, J.F. Dynes,, M. Lucamarini,, Z. Yuan,, A.J. Shields,: A modulator-free quantum key distribution transmitter chip. npj Quantum Inf. 5, 42(2019)
https://doi.org/10.1038/s41534-019-0158-7
901 W. Geng,, C. Zhang,, Y. Zheng,, J. He,, C. Zhou,, Y. Kong,: Stable quantum key distribution using a silicon photonic transceiver. Opt. Express 27, 29045–29054 (2019)
https://doi.org/10.1364/OE.27.029045
902 T.K. Paraïso,, T. Roger,, D.G. Marangon,, I. De Marco,, M. Sanzaro,, R.I. Woodward,, J.F. Dynes,, Z. Yuan,, A.J. Shields,: A photonic integrated quantum secure communication system. Nat. Photon. 15, 850–856 (2021)
https://doi.org/10.1038/s41566-021-00873-0
903 M. Avesani,, L. Calderaro,, M. Schiavon,, A. Stanco,, C. Agnesi,, A. Santamato,, M. Zahidy,, A. Scriminich,, G. Foletto,, G. Contestabile,: Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics. npj Quantum Inf. 7, 93(2021)
https://doi.org/10.1038/s41534-021-00421-2
904 X.D. Zheng,, P. Zhang,, R. Ge,, L. Lu,, G. He,, Q. Chen,, F. Qu,, L. Zhang,, X. Cai,, Y. Lu,, S. Zhu,, P. Wu,, X.S. Ma,: Heterogeneously integrated, superconducting silicon-photonic platform for measurement-device-independent quantum key distribution. Adv. Photon. 3, 055002(2021)
https://doi.org/10.1117/1.AP.3.5.055002
905 A.W. Elshaari,, W. Pernice,, K. Srinivasan,, O. Benson,, V. Zwiller,: Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020)
https://doi.org/10.1038/s41566-020-0609-x
906 F. Xu,, W. Chen,, S. Wang,, Z.Q. Yin,, Y. Zhang,, Y. Liu,, Z. Zhou,, Y.B. Zhao,, H.W. Li,, D. Liu,, Z.F. Han,, G.C. Guo,: Field experiment on a robust hierarchical metropolitan quantum cryptography network. Chin. Sci. Bull. 54, 2991–2997 (2009)
https://doi.org/10.1007/s11434-009-0526-3
907 M. Fujiwara,, A. Waseda,, R. Nojima,, S. Moriai,, W. Ogata,, M. Sasaki,: Unbreakable distributed storage with quantum key distribution network and password-authenticated secret sharing. Sci. Rep. 6, 28988(2016)
https://doi.org/10.1038/srep28988
908 C. Elliott,, A. Colvin,, D. Pearson,, O. Pikalo,, J. Schlafer,, H. Yeh,: Current status of the DARPA quantum network. arXiv preprint arXiv: quant-ph/0503058v2(2005)
909 M. Schiavon,, G. Vallone,, P. Villoresi,: Experimental realization of equiangular three-state quantum key distribution. Sci. Rep. 6, 30089(2016)
https://doi.org/10.1038/srep30089
910 C. Autebert,, J. Trapateau,, A. Orieux,, A. Lemaître,, C. Gomez- Carbonell,, E. Diamanti,, I. Zaquine,, S. Ducci,: Multi-user quantum key distribution with entangled photons from an AlGaAs chip. Quantum Sci. Technol. 1, 01LT02(2016)
https://doi.org/10.1088/2058-9565/1/1/01LT02
911 W. Sun,, L.J. Wang,, X.X. Sun,, Y. Mao,, H.L. Yin,, B.X. Wang,, T.Y. Chen,, J.W. Pan,: Experimental integration of quantum key distribution and gigabit-capable passive optical network. J. Appl. Phys. 123, 043105(2018)
https://doi.org/10.1063/1.5003342
912 G.Z. Tang,, S.H. Sun,, X. Feihu,, H. Chen,, C.Y. Li,, L.M. Liang,: Experimental asymmetric plug-and-play measurement-device-independent quantum key distribution. Phys. Rev. A 94, 032326(2016)
https://doi.org/10.1103/PhysRevA.94.032326
913 H.L. Yin,, T.Y. Chen,, Z.W. Yu,, H. Liu,, L.X. You,, Y.H. Zhou,, S.J. Chen,, Y. Mao,, M.Q. Huang,, W.J. Zhang,, H. Chen,, M.J. Li,, D. Nolan,, F. Zhou,, X. Jiang,, Z. Wang,, Q. Zhang,, X.B. Wang,, J.W. Pan,: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501(2016)
https://doi.org/10.1103/PhysRevLett.117.190501
914 J. Dynes,, W.S. Tam,, A. Plews,, B. Fröhlich,, A.W. Sharpe,, M. Lucamarini,, Z. Yuan,, C. Radig,, A. Straw,, T. Edwards,, A.J. Shields,: Ultra-high bandwidth quantum secured data transmission. Sci. Rep. 6, 35149(2016)
https://doi.org/10.1038/srep35149
915 C. Lee,, D. Bunandar,, Z. Zhang,, G. R. Steinbrecher,, P. Ben Dixon,, F. N. C. Wong,, J. H. Shapiro,, S. A. Hamilton,, D. Englund,: High-rate large-alphabet quantum key distribution over deployed telecom fiber. In: Conference on Lasers and Electro-Optics, OSA Technical Digest (online). Optica Publishing Group (2016)
916 J.F. Dynes,, S.J. Kindness,, S.W.-B. Tam,, A. Plews,, A.W. Sharpe,, M. Lucamarini,, B. Fröhlich,, Z.L. Yuan,, R.V. Penty,, A.J. Shields,: Quantum key distribution over multicore fiber. Opt. Express 24, 8081–8087 (2016)
https://doi.org/10.1364/OE.24.008081
917 S.K. Liao,, H.L. Yong,, C. Liu,, G.L. Shentu,, D.D. Li,, J. Lin,, H. Dai,, S.Q. Zhao,, B. Li,, J.Y. Guan,, W. Chen,, Y.H. Gong,, Y. Li,, Z.H. Lin,, G.S. Pan,, J.S. Pelc,, M.M. Fejer,, W.Z. Zhang,, W.Y. Liu,, J. Yin,, J.G. Ren,, X.B. Wang,, Q. Zhang,, C.Z. Peng,, J.W. Pan,: Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photon. 11, 509–513 (2017)
https://doi.org/10.1038/nphoton.2017.116
918 L.J. Wang,, K.H. Zou,, W. Sun,, Y. Mao,, Y.X. Zhu,, H.L. Yin,, Q. Chen,, Y. Zhao,, F. Zhang,, T.Y. Chen,, J.W. Pan,: Long-distance copropagation of quantum key distribution and terabit classical optical data channels. Phys. Rev. A 95, 012301(2017)
https://doi.org/10.1103/PhysRevA.95.012301
919 R.J. Collins,, R. Amiri,, M. Fujiwara,, T. Honjo,, K. Shimizu,, K. Tamaki,, M. Takeoka,, M. Sasaki,, E. Andersson,, G.S. Buller,: Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution. Sci. Rep. 7, 3235(2017)
https://doi.org/10.1038/s41598-017-03401-9
920 G.L. Roberts,, M. Lucamarini,, Z.L. Yuan,, J.F. Dynes,, L.C. Comandar,, A.W. Sharpe,, A.J. Shields,, M. Curty,, I.V. Puthoor,, E. Andersson,: Experimental measurement-device-independent quantum digital signatures. Nat. Commun. 8, 1098(2017)
https://doi.org/10.1038/s41467-017-01245-5
921 H.L. Yin,, W.L. Wang,, Y.L. Tang,, Q. Zhao,, H. Liu,, X.X. Sun,, W.J. Zhang,, H. Li,, I.V. Puthoor,, L.X. You,, E. Andersson,, Z. Wang,, Y. Liu,, X. Jiang,, X. Ma,, Q. Zhang,, M. Curty,, T.Y. Chen,, J.W. Pan,: Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Phys. Rev. A 95, 042338(2017)
https://doi.org/10.1103/PhysRevA.95.042338
922 E.O. Kiktenko,, N.O. Pozhar,, A.V. Duplinskiy,, A.A. Kanapin,, A.S. Sokolov,, S.S. Vorobey,, A.V. Miller,, V.E. Ustimchik,, M.N. Anufriev,, A.T. Trushechkin,, R.R. Yunusov,, V.L. Kurochkin,, Y.V. Kurochkin,, A.K. Fedorov,: Demonstration of a quantum key distribution network in urban fibre-optic communication lines. Quantum Electron. 47, 798(2017)
https://doi.org/10.1070/QEL16469
923 C.J. Pugh,, S. Kaiser,, J.P. Bourgoin,, J. Jin,, N. Sultana,, S. Agne,, E. Anisimova,, V. Makarov,, E. Choi,, B.L. Higgins,, T. Jennewein,: Airborne demonstration of a quantum key distribution receiver payload. Quantum Sci. Technol. 2, 024009(2017)
https://doi.org/10.1088/2058-9565/aa701f
924 J. Yin,, Y. Cao,, Y.H. Li,, S.K. Liao,, L. Zhang,, J.G. Ren,, W.Q. Cai,, W.Y. Liu,, B. Li,, H. Dai,, G.B. Li,, Q.M. Lu,, Y.H. Gong,, Y. Xu,, S.L. Li,, F.Z. Li,, Y.Y. Yin,, Z.Q. Jiang,, M. Li,, J.J. Jia,, G. Ren,, D. He,, Y.L. Zhou,, X.X. Zhang,, N. Wang,, X. Chang,, Z.C. Zhu,, N.L. Liu,, Y.A. Chen,, C.Y. Lu,, R. Shu,, C.Z. Peng,, J.Y. Wang,, J.W. Pan,: Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140(2017)
https://doi.org/10.1126/science.aan3211
925 S.K. Liao,, J. Lin,, J.G. Ren,, W.Y. Liu,, J. Qiang,, J. Yin,, Y. Li,, Q. Shen,, L. Zhang,, X.F. Liang,, H.L. Yong,, F.Z. Li,, Y.Y. Yin,, Y. Cao,, W.Q. Cai,, W.Z. Zhang,, J.J. Jia,, J.C. Wu,, X.W. Chen,, S.C. Zhang,, X.J. Jiang,, J.F. Wang,, Y.M. Huang,, Q. Wang,, L. Ma,, L. Li,, G.S. Pan,, Q. Zhang,, Y.A. Chen,, C.Y. Lu,, N.L. Liu,, X. Ma,, R. Shu,, C.Z. Peng,, J.Y. Wang,, J.W. Pan,: Space-to-ground quantum key distribution using a small-sized payload on Tiangong-2 Space Lab. Chin. Phys. Lett. 34, 090302(2017)
https://doi.org/10.1088/0256-307X/34/9/090302
926 H. Takenaka,, A. Carrasco-Casado,, M. Fujiwara,, M. Kitamura,, M. Sasaki,, M. Toyoshima,: Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite. Nat. Photon. 11, 502–508 (2017)
https://doi.org/10.1038/nphoton.2017.107
927 S.K. Liao,, W.Q. Cai,, J. Handsteiner,, B. Liu,, J. Yin,, L. Zhang,, D. Rauch,, M. Fink,, J.G. Ren,, W.Y. Liu,, Y. Li,, Q. Shen,, Y. Cao,, F.Z. Li,, J.F. Wang,, Y.M. Huang,, L. Deng,, T. Xi,, L. Ma,, T. Hu,, L. Li,, N.L. Liu,, F. Koidl,, P. Wang,, Y.A. Chen,, X.B. Wang,, M. Steindorfer,, G. Kirchner,, C.Y. Lu,, R. Shu,, R. Ursin,, T. Scheidl,, C.Z. Peng,, J.Y. Wang,, A. Zeilinger,, J.W. Pan,: Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120, 030501(2018)
https://doi.org/10.1103/PhysRevLett.120.030501
928 B. Fröhlich,, M. Lucamarini,, J.F. Dynes,, L.C. Comandar,, W.W. Tam,, A. Plews,, A.W. Sharpe,, Z. Yuan,, A.J. Shields,: Long-distance quantum key distribution secure against coherent attacks. Optica 4, 163–167 (2017)
https://doi.org/10.1364/OPTICA.4.000163
929 D. Rosenberg,, J.W. Harrington,, P.R. Rice,, P.A. Hiskett,, C.G. Peterson,, R.J. Hughes,, A.E. Lita,, S.W. Nam,, J.E. Nordholt,: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503(2007)
https://doi.org/10.1103/PhysRevLett.98.010503
930 C.Z. Peng,, J. Zhang,, D. Yang,, W.B. Gao,, H.X. Ma,, H. Yin,, H.P. Zeng,, T. Yang,, X.B. Wang,, J.W. Pan,: Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505(2007)
https://doi.org/10.1103/PhysRevLett.98.010505
931 X.T. Fang,, P. Zeng,, H. Liu,, M. Zou,, W. Wu,, Y.L. Tang,, Y.J. Sheng,, Y. Xiang,, W. Zhang,, H. Li,, Z. Wang,, L. You,, M.J. Li,, H. Chen,, Y.A. Chen,, Q. Zhang,, C.Z. Peng,, X. Ma,, T.Y. Chen,, J.W. Pan,: Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photon. 14, 422–425 (2020)
https://doi.org/10.1038/s41566-020-0599-8
932 A. Boaron,, G. Boso,, D. Rusca,, C. Vulliez,, C. Autebert,, M. Caloz,, M. Perrenoud,, G. Gras,, F. Bussières,, M.J. Li,, D. Nolan,, A. Martin,, H. Zbinden,: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502(2018)
https://doi.org/10.1103/PhysRevLett.121.190502
933 J. Qiu,: Quantum communications leap out of the lab. Nature 508, 441–442 (2014)
https://doi.org/10.1038/508441a
934 Micius Quantum Communication Satellite (QUESS). Aerospace Technology. Available at the website of aerospace-technology.com/projects/micius-quantum-communication-satellite. Accessed 11 July (2024)
935 Nippon Telegraph and Telephone Corporation (NTT). Available at the website of group.ntt. Accessed 11 July (2024)
936 University of Geneva—Université de Genève. Available at the website of unige.ch. Accessed 11 July (2024)
937 ID Quantique. Available at the website of idquantique.com. Accessed 11 July (2024)
938 M. Pittaluga,, M. Minder,, M. Lucamarini,, M. Sanzaro,, R.I. Woodward,, M.J. Li,, Z. Yuan,, A.J. Shields,: 600-km repeater-like quantum communications with dual-band stabilization. Nat. Photon. 15, 530–535 (2021)
https://doi.org/10.1038/s41566-021-00811-0
939 Toshiba Europe. Available at the website of toshiba.co.uk/pages/uk. Accessed 11 July (2024)
940 BT Labs. Available at the website of atadastral.co.uk/bt/. Accessed 11 July (2024)
941 R. I. Woodward,, J. F. Dynes,, P. Wright,, C. White,, R. C. Parker,, A. Wonfor,, Z. L. Yuan,, A. Lord,, A. J. Shields: Quantum key secured communications field trial for Industry 4.0. In: Optical Fiber Communication Conference (OFC) 2021. OSA Technical Digest (Optica Publishing Group, 2021), paper Th4H.4. (2021)
https://doi.org/10.1364/OFC.2021.Th4H.4
942 Quantum Xchange. Available at the website of quantumxc.com. Accessed 11 July (2024)
943 QuTech—Research institute for quantum computing and quantum internet. Available at the website of qutech.nl. Accessed 11 July (2024)
944 China Mobile Limited. Available at the website of chinamobileltd.com. Accessed 11 July (2024)
945 Quantum Network Facility, Brookhaven National Laboratory. Available at the website of bnl.gov/instrumentation/quantum/. Accessed 11 July (2024)
946 D. Sukachev,, M. Bhaskar,: Announcing the AWS Center for Quantum Networking, AWS Quantum Technologies Blog (21 JUN 2022). Available at the website of aws.amazon.com/blogs/quantum-computing/announcing-the-aws-center-for-quantumnetworking/. Accessed 12 July (2024)
947 T. Schmaltz,, C. Becher,, C. Endo,, C. Becher,, J. Schmidt,, L. Krieg,, L. Weymann,, S. Shirinzadeh,, T. Schmaltz,: Monitoring Report 1 - Quantum Communication (July 2024). Fraunhofer ISI (2024)
948 R. Müller,, F. Greinert,: Quantentechnologien: Für Ingenieure, Berlin, Boston: De Gruyter Oldenbourg (2023)
949 Y. Tian,, Y. Zhang,, S. Liu,, P. Wang,, Z. Lu,, X. Wang,, Y. Li,: High-performance long-distance discrete-modulation continuous- variable quantum key distribution. Opt. Lett. 48, 2953–6 (2023)
https://doi.org/10.1364/OL.492082
950 Y. Zhang,, Y. Bian,, Z. Li,, S. Yu,, H. Guo,: Continuous-variable quantum key distribution system: past, present, and future. Appl. Phys. Rev. 11(2024)
https://doi.org/10.1063/5.0179566
951 J. Preskill,: Quantum computing and the entanglement frontier. arXiv preprint arXiv: 1203.5813v3 [quant-ph] (2012)
952 C. Neill,, P. Roushan,, K. Kechedzhi,, S. Boixo,, S.V. Isakov,, V. Smelyanskiy,, A. Megrant,, B. Chiaro,, A. Dunsworth,, K. Arya,, R. Barends,, B. Burkett,, Y. Chen,, Z. Chen,, A. Fowler,, B. Foxen,, M. Giustina,, R. Graff,, E. Jeffrey,, T. Huang,, J. Kelly,, P. Klimov,, E. Lucero,, J. Mutus,, M. Neeley,, C. Quintana,, D. Sank,, A. Vainsencher,, J. Wenner,, T.C. White,, H. Neven,, J.M. Martinis,: A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360, 195–199 (2018)
https://doi.org/10.1126/science.aao4309
953 D.J. Brod,, E.F. Galvão,, A. Crespi,, R. Osellame,, N. Spagnolo,, F. Sciarrino,: Photonic implementation of boson sampling: a review. Adv. Photon. 1(3), 034001(2019)
954 H. Zhu,, J. Zou,, H. Zhang,, Y. Shi,, S. Luo,, N. Wang,, H. Cai,, L. Wan,, B. Wang,, X. Jiang,, J. Thompson,, X.S. Luo,, X.H. Zhou,, L.M. Xiao,, W. Huang,, L. Patrick,, M. Gu,, L.C. Kwek,, A.Q. Liu,: Space-efficient optical computing with an integrated chip diffractive neural network. Nat. Commun. 13(1), 1–9 (2022)
https://doi.org/10.1038/s41467-022-28702-0
955 S. Arora,, B. Barak,: Computational Complexity: a Modern Approach. Cambridge University Press (2009)
956 A.P. Lund,, M.J. Bremner,, T.C. Ralph,: Quantum sampling problems, BosonSampling and quantum supremacy. npj Quantum Inf 3, 15(2017)
https://doi.org/10.1038/s41534-017-0018-2
957 S. Aaronson,, D.J. Brod,: BosonSampling with lost photons. Phys. Rev. A 93, 012335(2016)
https://doi.org/10.1103/PhysRevA.93.012335
958 A. Leverrier,, R. Garcia-Patron,: Analysis of circuit imperfections in bosonsampling. Quantum Inf. Comput. 15, 489–512 (2015)
https://doi.org/10.26421/QIC15.5-6-8
959 A. Arkhipov,: BosonSampling is robust against small errors in the network matrix. Phys. Rev. A 92, 062326(2015)
https://doi.org/10.1103/PhysRevA.92.062326
960 S. Rahimi-Keshari,, T.C. Ralph,, C.M. Caves,: Sufficient conditions for efficient classical simulation of quantum optics. Phys. Rev. X 6, 021039(2016)
https://doi.org/10.1103/PhysRevX.6.021039
961 P.P. Rohde,, T.C. Ralph,: Error tolerance of the boson-sampling model for linear optics quantum computing. Phys. Rev. A 85, 022332(2012)
https://doi.org/10.1103/PhysRevA.85.022332
962 E.P. Wigner,: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749(1932)
https://doi.org/10.1103/PhysRev.40.749
963 K. Husimi,: Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn. 22, 264(1940)
964 R. Kruse,, C.S. Hamilton,, L. Sansoni,, S. Barkhofen,, C. Silberhorn,, I. Jex,: Detailed study of gaussian boson sampling. Phys. Rev. A 100(3), 032326(2019)
https://doi.org/10.1103/PhysRevA.100.032326
965 S. Jahangiri,, J.M. Arrazola,, N. Quesada,, N. Killoran,: Point processes with Gaussian boson sampling. Phys. Rev. E 101, 022134(2020)
https://doi.org/10.1103/PhysRevE.101.022134
966 L. Banchi,, M. Fingerhuth,, T. Babej,, C. Ing,, J.M. Arrazola,: Molecular docking with Gaussian boson sampling. Sci. Adv. 6, eaax1950(2020)
https://doi.org/10.1126/sciadv.aax1950
967 L. Banchi,, N. Quesada,, J.M. Arrazola,: Training Gaussian boson sampling distributions. Phys. Rev. A 102, 012414(2020)
https://doi.org/10.1103/PhysRevA.102.012417
968 S. Jahangiri,, J.M. Arrazola,, N. Quesada,, A. Delgado,: Quantum algorithm for simulating molecular vibrational excitations. Phys. Chem. Chem. Phys. 22, 25528–25537 (2020)
https://doi.org/10.1039/D0CP03593A
969 B. Villalonga,, M. Niu,, L. Li,, H. Neven,, J.C. Platt,, V.N. Smelyanskiy,, S. Boixo,: Efficient approximation of experimental Gaussian boson sampling. arXiv preprint arXiv: 2109.11525(2021)
970 F. Arute,, K. Arya,, R. Babbush,, D. Bacon,, J.C. Bardin,, R. Barends,, R. Biswas,, S. Boixo,, F.G.S.L. Brandao,, D.A. Buell,, B. Burkett,, Y. Chen,, Z. Chen,, B. Chiaro,, R. Collins,, W. Courtney,, A. Dunsworth,, E. Farhi,, B. Foxen,, A. Fowler,, C. Gidney,, M. Giustina,, R. Graff,, K. Guerin,, S. Habegger,, M.P. Harrigan,, M.J. Hartmann,, A. Ho,, M. Hoffmann,, T. Huang,, T.S. Humble,, S.V. Isakov,, E. Jeffrey,, Z. Jiang,, D. Kafri,, K. Kechedzhi,, J. Kelly,, P.V. Klimov,, S. Knysh,, A. Korotkov,, F. Kostritsa,, D. Landhuis,, M. Lindmark,, E. Lucero,, D. Lyakh,, S. Mandrà,, J.R. McClean,, M. McEwen,, A. Megrant,, X. Mi,, K. Michielsen,, M. Mohseni,, J. Mutus,, O. Naaman,, M. Neeley,, C. Neill,, M.Y. Niu,, E. Ostby,, A. Petukhov,, J.C. Platt,, C. Quintana,, E.G. Rieffel,, P. Roushan,, N.C. Rubin,, D. Sank,, K.J. Satzinger,, V. Smelyanskiy,, K.J. Sung,, M.D. Trevithick,, A. Vainsencher,, B. Villalonga,, T. White,, Z.J. Yao,, P. Yeh,, A. Zalcman,, H. Neven,, J.M. Martinis,: Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019)
https://doi.org/10.1038/s41586-019-1666-5
971 A. Morvan,, B. Villalonga,, X. Mi,, S. Mandrà,, A. Bengtsson,, P.V. Klimov,, Z. Chen,, S. Hong,, C. Erickson,: Phase transition in random circuit sampling. arXiv preprint arXiv: 2304.11119(2023)
972 Y. Wu,, W.S. Bao,, S. Cao,, F. Chen,, M.C. Chen,, X. Chen,, T.H. Chung,, H. Deng,, Y. Du,, D. Fan,, M. Gong,, C. Guo,, C. Guo,, S. Guo,, L. Han,, L. Hong,, H.L. Huang,, Y.H. Huo,, L. Li,, N. Li,, S. Li,, Y. Li,, F. Liang,, C. Lin,, J. Lin,, H. Qian,, D. Qiao,, H. Rong,, H. Su,, L. Sun,, L. Wang,, S. Wang,, D. Wu,, Y. Xu,, K. Yan,, W. Yang,, Y. Yang,, Y. Ye,, J. Yin,, C. Ying,, J. Yu,, C. Zha,, C. Zhang,, H. Zhang,, K. Zhang,, Y. Zhang,, H. Zhao,, Y. Zhao,, L. Zhou,, Q. Zhu,, C.Y. Lu,, C.Z. Peng,, X. Zhu,, J.W. Pan,: Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501(2021)
https://doi.org/10.1103/PhysRevLett.127.180501
973 Q. Zhu,, S. Cao,, F. Chen,, M.C. Chen,, X. Chen,, T.H. Chung,, H. Deng,, Y. Du,, D. Fan,, M. Gong,, C. Guo,, C. Guo,, S. Guo,, L. Han,, L. Hong,, H.L. Huang,, Y.H. Huo,, L. Li,, N. Li,, S. Li,, Y. Li,, F. Liang,, C. Lin,, J. Lin,, H. Qian,, D. Qiao,, H. Rong,, H. Su,, L. Sun,, L. Wang,, S. Wang,, D. Wu,, Y. Wu,, Y. Xu,, K. Yan,, W. Yang,, Y. Yang,, Y. Ye,, J. Yin,, C. Ying,, J. Yu,, C. Zha,, C. Zhang,, H. Zhang,, K. Zhang,, Y. Zhang,, H. Zhao,, Y. Zhao,, L. Zhou,, C.Y. Lu,, C.Z. Peng,, X. Zhu,, J.W. Pan,: Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Sci. Bull. 67, 240–245 (2022)
https://doi.org/10.1016/j.scib.2021.10.017
974 A. Zlokapa,, B. Villalonga,, S.L.D.A. Boixo,: Boundaries of quantum supremacy via random circuit sampling. npj Quantum Inf. 9, 1(2023)
https://doi.org/10.1038/s41534-023-00703-x
975 A. Bouland,, B. Fefferman,, C. Nirkhe,, U. Vazirani,: On the complexity and verification of quantum random circuit sampling. Nat. Phys. 15, 2(2019)
https://doi.org/10.1038/s41567-018-0318-2
976 H.S. Zhong,, Y. Li,, W. Li,, L.C. Peng,, Z.E. Su,, Y. Hu,, Y.M. He,, X. Ding,, W. Zhang,, H. Li,, L. Zhang,, Z. Wang,, L. You,, X.L. Wang,, X. Jiang,, L. Li,, Y.A. Chen,, N.L. Liu,, C.Y. Lu,, J.W. Pan,: 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121(25), 250505(2018)
https://doi.org/10.1103/PhysRevLett.121.250505
977 J. Preskill,: Quantum computing in the NISQ era and beyond. Quantum 2, 79(2018)
https://doi.org/10.22331/q-2018-08-06-79
978 H. Qi,, D.J. Brod,, N. Quesada,, R. García-Patrón,: Regimes of classical simulability for noisy Gaussian Boson sampling. Phys. Rev. Lett. 124(10), 100502(2020)
https://doi.org/10.1103/PhysRevLett.124.100502
979 M. AbuGhanem,: Properties of some quantum computing models. Master’s Thesis, Ain Shams University (2019)
980 H.Y. Huang,, M. Broughton,, J. Cotler,, S. Chen,, J. Li,, M. Mohseni,, H. Neven,, R. Babbush,, R. Kueng,, J. Preskill,, J.R. McClean,: Quantum advantage in learning from experiments. Science 376, 6598(2022)
https://doi.org/10.1126/science.abn7293
981 I. Goodfellow,, Y. Bengio,, A. Courville,: Deep Learning. The MIT Press (2016)
982 M. Mohri,, A. Rostamizadeh,, A. Talwalkar,: Foundations of Machine Learning. The MIT Press (2018)
983 J. Biamonte,, P. Wittek,, N. Pancotti,, P. Rebentrost,, N. Wiebe,, S. Lloyd,: Quantum machine learning. Nature 549, 195–202 (2017)
https://doi.org/10.1038/nature23474
984 M. Broughton,, G. Verdon,, T. Mccourt,, A.J. Martinez,, M. Mohseni,: Tensorflow quantum: a software framework for quantum machine learning. arXiv preprint arXiv 2003. 02989 [quant-ph] (2021)
985 M. Benedetti,, B. Coyle,, M. Fiorentini,, M. Lubasch,, M. Rosenkranz,: Variational inference with a quantum computer. Phys. Rev. Appl. 16, 044057(2021)
https://doi.org/10.1103/PhysRevApplied.16.044057
986 U. Alvarez-Rodriguez,, M. Sanz,, L. Lamata,, E. Solano,: Quantum artificial life in an IBM quantum computer. Sci. Rep. 8, 14793(2018)
https://doi.org/10.1038/s41598-018-33125-3
987 IBM, Exploring quantum use cases for chemicals and petroleum: changing how chemicals are designed and petroleum is refined. Available at the website of ibm.com/downloads/cas/BDGQRXOZ (2023)
988 A. Kandala,, A. Mezzacapo,, K. Temme,, M. Takita,, M. Brink,, J.M. Chow,, J.M. Gambetta,: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017)
https://doi.org/10.1038/nature23879
989 A. Aspuru-Guzik,, P. Walther,: Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012)
https://doi.org/10.1038/nphys2253
990 A.I. Gircha,, A.S. Boev,, K. Avchaciov,, P.O. Fedichev,, A.K. Fedorov,: Hybrid quantum-classical machine learning for generative chemistry and drug design. Sci. Rep. 13, 8250(2023)
https://doi.org/10.1038/s41598-023-32703-4
991 C.L. Degen,, F. Reinhard,, P. Cappellaro,: Quantum sensing. Rev. Mod. Phys. 89, 035002(2017)
https://doi.org/10.1103/RevModPhys.89.035002
992 J. Yin,, Y.H. Li,, S.K. Liao,, M. Yang,, Y. Cao,, L. Zhang,, J.G. Ren,, W.Q. Cai,, W.Y. Liu,, S.L. Li,, R. Shu,, Y.M. Huang,, L. Deng,, L. Li,, Q. Zhang,, N.L. Liu,, Y.A. Chen,, C.Y. Lu,, X.B. Wang,, F. Xu,, J.Y. Wang,, C.Z. Peng,, A.K. Ekert,, J.W. Pan,: Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582, 501–505 (2020)
https://doi.org/10.1038/s41586-020-2401-y
993 J. Yin,, Y. Cao,, Y.H. Li,, J.G. Ren,, S.K. Liao,, L. Zhang,, W.Q. Cai,, W.Y. Liu,, B. Li,, H. Dai,, M. Li,, Y.M. Huang,, L. Deng,, L. Li,, Q. Zhang,, N.L. Liu,, Y.A. Chen,, C.Y. Lu,, R. Shu,, C.Z. Peng,, J.Y. Wang,, J.W. Pan,: Satellite-to-ground entanglementbased quantum key distribution. Phys. Rev. Lett. 119, 200501(2017)
https://doi.org/10.1103/PhysRevLett.119.200501
994 S. Ebadi,, A. Keesling,, M. Cain,, T.T. Wang,, H. Levine,, D. Bluvstein,, G. Semeghini,, A. Omran,, J.G. Liu,, R. Samajdar,, X.Z. Luo,, B. Nash,, X. Gao,, B. Barak,, E. Farhi,, S. Sachdev,, N. Gemelke,, L. Zhou,, S. Choi,, H. Pichler,, S.T. Wang,, M. Greiner,, M.D. Vuletić, V., Lukin,: Quantum optimization of maximum independent set using Rydberg atom arrays. Science 376, 1209(2022)
https://doi.org/10.1126/science.abo6587
995 A. Aspuru-Guzik,, A.D. Dutoi,, P.J. Love,, M. Head-Gordon,: Simulated quantum computation of molecular energies. Science 309(5741), 1704–1707 (2005)
https://doi.org/10.1126/science.1113479
996 S. Paesani,, A.A. Gentile,, R. Santagati,, J. Wang,, N. Wiebe,, D.P. Tew,, J.L. O’Brien,, M.G. Thompson,: Experimental Bayesian quantum phase estimation on a silicon photonic chip. Phys. Rev. Lett. 118, 100503(2017)
https://doi.org/10.1103/PhysRevLett.118.100503
997 Y. Nam,, J.-S. Chen,, N.C. Pisenti,, K. Wright,, C. Delaney,, D. Maslov,, K.R. Brown,, S. Allen,, J.M. Amini,, J. Apisdorf,, K.M. Beck,, A. Blinov,, V. Chaplin,, M. Chmielewski,, C. Collins,, S. Debnath,, K.M. Hudek,, A.M. Ducore,, M. Keesan,, S.M. Kreikemeier,, J. Mizrahi,, P. Solomon,, M. Williams,, J.D. Wong-Campos,, D. Moehring,, C. Monroe,, J. Kim,: Ground-state energy estimation of the water molecule on a trapped-ion quantum computer. NPJ Quantum Inf. 6(1), 1–6 (2020)
https://doi.org/10.1038/s41534-020-0259-3
998 G.A. Quantum Collaborators,: Hartree-fock on a superconducting qubit quantum computer. Science 369(6507), 1084–1089 (2020)
999 P.J. O’Malley,, R. Babbush,, I.D. Kivlichan,, J. Romero,, J.R. McClean,, R. Barends,, J. Kelly,, P. Roushan,, A. Tranter,, N. Ding,, B. Campbell,, Y. Chen,, Z. Chen,, B. Chiaro,, A. Dunsworth,, A.G. Fowler,, E. Jeffrey,, E. Lucero,, A. Megrant,, J.Y. Mutus,, M. Neeley,, C. Neill,, C. Quintana,, D. Sank,, A. Vainsencher,, J. Wenner,, T.C. White,, P.V. Coveney,, P.J. Love,, H. Neven,, A. Aspuru-Guzik,, J.M. Martinis,: Scalable quantum simulation of molecular energies. Phys. Rev. X 6(3), 031007(2016)
https://doi.org/10.1103/PhysRevX.6.031007
1000 J.R. McClean,, J. Romero,, R. Babbush,, A. Aspuru-Guzik,: The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18(2), 023023(2016)
https://doi.org/10.1088/1367-2630/18/2/023023
1001 M. Sipser,: Introduction to the Theory of Computation, 3rd edn. Course Technology, Boston (2013)
1002 E. Farhi,, J. Goldstone,, S. Gutmann,: A quantum approximate optimization algorithm. arXiv preprint arXiv: 1411.4028 [quantph] (2014)
1003 E. Farhi,, J. Goldstone,, S. Gutmann,, M. Sipser,: Quantum computation by adiabatic evolution. arXiv preprint arXiv: quant-ph/0001106(2000)
1004 T. Albash,, D.A. Lidar,: Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002(2018)
https://doi.org/10.1103/RevModPhys.90.015002
1005 F. Glover,, G. Kochenberger,, R. Hennig,, Y. Du,: Quantum bridge analytics I: a tutorial on formulating and using QUBO models. Ann. Oper. Res. 17(4), 335–371 (2019)
https://doi.org/10.1007/s10288-019-00424-y
1006 T. Kadowaki,, H. Nishimori,: Quantum annealing in the transverse Ising model. Phys. Rev. E 58(5), 5355(1998)
https://doi.org/10.1103/PhysRevE.58.5355
1007 K. Ikeda,, Y. Nakamura,, T.S. Humble,: Application of quantum annealing to nurse scheduling problem. Sci. Rep. 9(1), 1–10 (2019)
https://doi.org/10.1038/s41598-019-49172-3
1008 A. Lucas,: Ising formulations of many NP problems. Front. Phys. 2, 5(2014)
https://doi.org/10.3389/fphy.2014.00005
1009 E. Pelucchi,, G. Fagas,, I. Aharonovich,, D. Englund,, E. Figueroa,, Q. Gong,, H. Hannes,, J. Liu,, C.Y. Lu,, N. Matsuda,, J.W. Pan,, F. Schreck,, F. Sciarrino,, C. Silberhorn,, J. Wang,, K.D. Jöns,: The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2022)
https://doi.org/10.1038/s42254-021-00398-z
1010 M.A. Nielsen,: Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503(2004)
https://doi.org/10.1103/PhysRevLett.93.040503
1011 N.C. Menicucci,, S.T. Flammia,, O. Pfister,: One-way quantum computing in the optical frequency comb. Phys. Rev. Lett. 101, 130501(2008)
https://doi.org/10.1103/PhysRevLett.101.130501
1012 N. Quesada,: Franck-Condon factors by counting perfect matchings of graphs with loops. J. Chem. Phys. 150, 164113(2019)
https://doi.org/10.1063/1.5086387
1013 J. Huh,, M.H. Yung,: Vibronic Boson sampling: generalized Gaussian Boson sampling for molecular vibronic spectra at finite temperature. Sci. Rep. 7, 7462(2017)
https://doi.org/10.1038/s41598-017-07770-z
1014 M. AbuGhanem,: Fast Universal Entangling Gate for Superconducting Quantum Computers. Elsevier, SSRN 4726035(2024)
1015 M. AbuGhanem,: Full quantum process tomography of a universal entangling gate on an IBM’s quantum computer. arXiv preprint arXiv: 2402.06946(2024)
1016 D.E. Browne,, T. Rudolph,: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501(2005)
https://doi.org/10.1103/PhysRevLett.95.010501
1017 M. Pant,, D. Towsley,, D. Englund,, S. Guha,: Percolation thresholds for photonic quantum computing. Nat. Commun. 10, 1070(2019)
https://doi.org/10.1038/s41467-019-08948-x
1018 C. Vigliar,, S. Paesani,, Y. Ding,, J.C. Adcock,, J. Wang,, S. Morley-Short,, D. Bacco,, L.K. Oxenløwe,, M.G. Thompson,, J.G. Rarity,, A. Laing,: Error-protected qubits in a silicon photonic chip. Nat. Phys. 17, 1137–1143 (2021)
https://doi.org/10.1038/s41567-021-01333-w
1019 M. Stipcevic,: Quantum random number generators and their applications in cryptography. In: Proc. SPIE 8375, Advanced Photon Counting Techniques VI. SPIE, Baltimore, 837504(2012)
https://doi.org/10.1117/12.919920
1020 C.R.S. Williams,, J.C. Salevan,, X. Li,, R. Roy,, T.E. Murphy,: Fast physical random number generator using amplified spontaneous emission. Opt. Express 18, 23584–23597 (2010)
https://doi.org/10.1364/OE.18.023584
1021 B. Qi,, Y.M. Chi,, H.K. Lo,, L. Qian,: High-speed quantum random number generation by measuring phase noise of a singlemode laser. Opt. Lett. 35, 312–314 (2010)
https://doi.org/10.1364/OL.35.000312
1022 F.H. Xu,, B. Qi,, X. Ma,, H. Xu,, H. Zheng,, H.K. Lo,: Ultrafast quantum random number generation based on quantum phase fluctuations. Opt. Express 20, 12366–12377 (2012)
https://doi.org/10.1364/OE.20.012366
1023 Y.Q. Nie,, L. Huang,, Y. Liu,, F. Payne,, J. Zhang,, J.W. Pan,: The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. Rev. Sci. Instrum. 86, 063105(2015)
https://doi.org/10.1063/1.4922417
1024 J.L. Liu,, J. Yang,, Z. Li,, Q. Su,, W. Huang,, B. Xu,, H. Guo,: 117 Gbits/s quantum random number generation with simple structure. IEEE Photon. Technol. Lett. 29, 283–286 (2017)
https://doi.org/10.1109/LPT.2016.2639562
1025 C. Gabriel,, C. Wittmann,, D. Sych,, R. Dong,, W. Mauerer,, U.L. Andersen,, C. Marquardt,, G. Leuchs,: A generator for unique quantum random numbers based on vacuum states. Nat. Photon. 4, 711–715 (2010)
https://doi.org/10.1038/nphoton.2010.197
1026 T. Symul,, S.M. Assad,, P.K. Lam,: Real time demonstration of high bitrate quantum random number generation with coherent laser light. Appl. Phys. Lett. 98, 231103(2011)
https://doi.org/10.1063/1.3597793
1027 Y.C. Shi,, B. Chng,, C. Kurtsiefer,: Random numbers from vacuum fluctuations. Appl. Phys. Lett. 109, 041101(2016)
https://doi.org/10.1063/1.4959887
1028 Z.Y. Zheng,, Y. Zhang,, W. Huang,, S. Yu,, H. Guo,: 6 Gbps real-time optical quantum random number generator based on vacuum fluctuation. Rev. Sci. Instrum. 90, 043105(2019)
https://doi.org/10.1063/1.5078547
1029 Q. Zhou,, R. Valivarthi,, C. John,, W. Tittel,: Practical quantum random-number generation based on sampling vacuum fluctuations. Quantum Eng. 1, e8(2019)
https://doi.org/10.1002/que2.8
1030 B. Haylock,, D. Peace,, F. Lenzini,, C. Weedbrook,, M. Lobino,: Multiplexed quantum random number generation. Quantum 3, 141(2019)
https://doi.org/10.22331/q-2019-05-13-141
1031 F. Regazzoni,, E. Amri,, S. Burri,, D. Rusca,, E. Charbon,: A high speed integrated quantum random number generator with on-chip real-time randomness extraction. arXiv preprint arXiv: 2102. 06238 [quant-ph] (2021)
1032 C. Bruynsteen,, T. Gehring,, C. Lupo,, J. Bauwelinck,, X. Yin,: 100-Gbit/s integrated quantum random number generator based on vacuum fluctuations. PRX Quantum 4, 010330(2023)
https://doi.org/10.1103/PRXQuantum.4.010330
1033 F. Raffaelli,, P. Sibson,, J.E. Kennard,, D.H. Mahler,, M.G. Thompson,, J.C.F. Matthews,: Generation of random numbers by measuring phase fluctuations from a laser diode with a siliconon- insulator chip. Opt. Express 26, 19730–19741 (2018)
https://doi.org/10.1364/OE.26.019730
1034 S.J. Freedman,, J.F. Clauser,: Experimental test of local hiddenvariable theories. Phys. Rev. Lett. 28, 938–941 (1972)
https://doi.org/10.1103/PhysRevLett.28.938
1035 F. Flamini,, L. Magrini,, A.S. Rab,, N. Spagnolo,, V. D’Ambrosio,, P. Mataloni,, F. Sciarrino,, T. Zandrini,, A. Crespi,, R. Ramponi,, R. Osellame,: Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining. Light Sci. Appl. 4, e354(2015)
https://doi.org/10.1038/lsa.2015.127
1036 Y. Ding,, D. Llewellyn,, I. Faruque,, S. Paesani,, D. Bacco,, R. Santagati,, Y. Qian,, Y. Li,, Y. Xiao,, M. Huber,: Demonstration of chip-to-chip quantum teleportation. In: Conference on Lasers Electro-Optics (CLEO). Optical Society of America, JTh5C.4(2019)
https://doi.org/10.1364/CLEO_AT.2019.JTh5C.4
1037 N. Spagnolo,, C. Vitelli,, L. Aparo,, P. Mataloni,, F. Sciarrino,, A. Crespi,, R. Ramponi,, R. Osellame,: Three-photon bosonic coalescence in an integrated tritter. Nat. Commun. 4, 1606(2013)
https://doi.org/10.1038/ncomms2616
1038 B.J. Metcalf,, N. Thomas-Peter,, J.B. Spring,, D. Kundys,, M.A. Broome,, P.C. Humphreys,, X.M. Jin,, M. Barbieri,, W. Steven Kolthammer,, J.C. Gates,, B.J. Smith,, N.K. Langford,, P.G.R. Smith,, I.A. Walmsley,: Multiphoton quantum interference in a multiport integrated photonic device. Nat. Commun. 4, 1356(2013)
https://doi.org/10.1038/ncomms2349
1039 N. Spagnolo,, C. Vitelli,, M. Bentivegna,, D.J. Brod,, A. Crespi,, F. Flamini,, S. Giacomini,, G. Milani,, R. Ramponi,, P. Mataloni,, R. Osellame,, E.F. Galvão,, F. Sciarrino,: Experimental validation of photonic boson sampling. Nat. Photon. 8, 615–620 (2014)
https://doi.org/10.1038/nphoton.2014.135
1040 T. Giordani,, F. Flamini,, M. Pompili,, N. Viggianiello,, N. Spagnolo,, A. Crespi,, R. Osellame,, N. Wiebe,, M. Walschaers,, A. Buchleitner,, F. Sciarrino,: Experimental statistical signature of many-body quantum interference. Nat. Photon. 12, 173–178 (2018)
https://doi.org/10.1038/s41566-018-0097-4
1041 I. Agresti,, N. Viggianiello,, F. Flamini,, N. Spagnolo,, A. Crespi,, R. Osellame,, N. Wiebe,, F. Sciarrino,: Pattern recognition techniques for Boson sampling validation. Phys. Rev. X 9, 011013(2019)
https://doi.org/10.1103/PhysRevX.9.011013
1042 A. Neville,, C. Sparrow,, R. Clifford,, E. Johnston,, P.M. Birchall,, A. Montanaro,, A. Laing,: Classical boson sampling algorithms with superior performance to near-term experiments. Nat. Phys. 13, 1153–1157 (2017)
https://doi.org/10.1038/nphys4270
1043 A. Crespi,, R. Osellame,, R. Ramponi,, V. Giovannetti,, R. Fazio,, L. Sansoni,, F. De Nicola,, F. Sciarrino,, P. Mataloni,: Anderson localization of entangled photons in an integrated quantum walk. Nat. Photon. 7, 322–328 (2013)
https://doi.org/10.1038/nphoton.2013.26
1044 I. Pitsios,, L. Banchi,, A.S. Rab,, M. Bentivegna,, D. Caprara,, A. Crespi,, N. Spagnolo,, S. Bose,, P. Mataloni,, R. Osellame,, F. Sciarrino,: Photonic simulation of entanglement growth and engineering after a spin chain quench. Nat. Commun. 8, 1569(2017)
https://doi.org/10.1038/s41467-017-01589-y
1045 A. Crespi,, L. Sansoni,, G. Della Valle,, A. Ciamei,, R. Ramponi,, F. Sciarrino,, P. Mataloni,, S. Longhi,, R. Osellame,: Particle statistics affects quantum decay and Fano interference. Phys. Rev. Lett. 114, 090201(2015)
https://doi.org/10.1103/PhysRevLett.114.090201
1046 F. Caruso,, A. Crespi,, A.G. Ciriolo,, F. Sciarrino,, R. Osellame,: Fast escape of a quantum walker from an integrated photonic maze. Nat. Commun. 7, 1682(2016)
https://doi.org/10.1038/ncomms11682
1047 D.N. Biggerstaff,, R. Heilmann,, A.A. Zecevik,, M. Gräfe,, M.A. Broome,, A. Fedrizzi,, S. Nolte,, A. Szameit,, A.G. White,, I. Kassal,: Enhancing coherent transport in a photonic network using controllable decoherence. Nat. Commun. 7, 11282(2016)
https://doi.org/10.1038/ncomms11282
1048 H. Tang,, C. Di Franco,, Z.Y. Shi,, T.S. He,, Z. Feng,, J. Gao,, K. Sun,, Z.M. Li,, Z.Q. Jiao,, T.Y. Wang,, M.S. Kim,, X.M. Jin,: Experimental quantum fast hitting on hexagonal graphs. Nat. Photon. 12, 754–758 (2018)
https://doi.org/10.1038/s41566-018-0282-5
1049 K. Poulios,, R. Keil,, D. Fry,, J.D.A. Meinecke,, J.C.F. Matthews,, A. Politi,, M. Lobino,, M. Gräfe,, M. Heinrich,, S. Nolte,, A. Szameit,, J.L. O’Brien,: Quantum walks of correlated photon pairs in two-dimensional waveguide arrays. Phys. Rev. Lett. 112, 143604(2014)
https://doi.org/10.1103/PhysRevLett.112.143604
1050 R. Santagati,, J. Wang,, A.A. Gentile,, S. Paesani,, N. Wiebe,, J.R. McClean,, S. Morley-Short,, P.J. Shadbolt,, D. Bonneau,, J.W. Silverstone,, D.P. Tew,, X. Zhou,, J.L. O’Brien,, M.G. Thompson,: Witnessing eigenstates for quantum simulation of Hamiltonian spectra. Sci. Adv. 4, eaap9646(2018)
https://doi.org/10.1126/sciadv.aap9646
1051 Photonics Market by Type (LED, Lasers, Detectors, Sensors and Imaging Devices, Optical Communication Systems & Networking components, Consumer Electronic & Devices), Application End-use Industry, and Region—Global Forecast to 2025, Photonics Market Report 2023, MarketsandMarkets Research Pvt. Ltd. Available at the website of marketsandmarkets.com/Market-Reports/photonics-market-88194993.html#utm_source=Globenewswire&utm_medium=Referal&utm_campaign=PaidPR. Accessed 21 July (2024)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed