Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2008, Vol. 1 Issue (3-4) : 305-308    https://doi.org/10.1007/s12200-008-0028-y
Research article
SiC/Mg multilayer reflective mirror for He-II radiation at 30.4 nm and its thermal stability
Jingtao ZHU1(), Da XU1, Shumin ZHANG1, Wenjuan WU1, Zhong ZHANG1, Fengli WANG1, Bei WANG1, Cunxia LI1, Yao XU1, Zhanshan WANG1, Lingyan CHEN1, Hongjun ZHOU2, Tonglin HUO2
1. Institute of Precision Optical Engineering and Technology, Physics Department, Tongji University; 2. National Synchrotron Radiation Laboratory, University of Science and Technology of China
 Download: PDF(163 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In applications of solar physics, extreme ultraviolet imaging of solar corona by selecting the He-II (λ = 30.4 nm) emission line requires high reflectivity multilayer mirrors. Some material combinations were studied to design the mirrors working at a wavelength of 30.4 nm, including SiC/Mg, B4C/Mg, C/Mg, C/Al, Mo/Si, B4C/Si, SiC/Si, C/Si, and Sc/Si. Based on optimization of the largest reflectivity and the narrowest width for the multilayer mirror, a SiC/Mg material combination was selected as the mirror and fabricated by a magnetron sputtering system. The layer thicknesses of the SiC/Mg multilayer were measured by an X-ray diffractometer. Reflectivities were then measured on beamline U27 at the National Synchrotron Radiation Laboratory (NSRL) in Hefei, China. At a wavelength of 30.4 nm, the measured reflectivity is as high as 38.0%. Furthermore, a series of annealing experiments were performed to investigate the thermal stability of the SiC/Mg multilayer.

Keywords thin film optics      solar He-II radiation      extreme ultraviolet      multilayer reflective mirror      magnetron sputtering      synchrotron radiation     
Corresponding Author(s): ZHU Jingtao,Email:jtzhu@mail.tongji.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Jingtao ZHU,Da XU,Shumin ZHANG, et al. SiC/Mg multilayer reflective mirror for He-II radiation at 30.4 nm and its thermal stability[J]. Front Optoelec Chin, 2008, 1(3-4): 305-308.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-008-0028-y
https://academic.hep.com.cn/foe/EN/Y2008/V1/I3-4/305
Fig0  Optical constant of material at wavelength of 30.4 nm
multilayerlayer thickness/nmreflectivityΔλ/nm
SiC/Mg4.41/11.430.56031.67
B4C/Mg4.10/11.750.58161.83
C/Mg4.12/11.730.52012.00
C/Al4.64/11.930.37331.83
C/Si5.34/11.630.29412.00
SiC/Si6.23/10.710.26481.50
B4C/Si5.93/11.100.32672.00
Sc/Si3.32/13.340.26532.00
Mo/Si3.03/13.610.25612.33
Tab0  Peak reflectivities and bandwidths(FWHM) at wavelength of 30.4 nm and incident angle of 10° for the 30-pair multilayers shown in Fig. 2
1 RavetM F, BridouF, Zhang-SongX, . Ion beam deposited Mo/Si multilayers for EUV imaging applications in astrophysics. Proceedings of SPIE , 2004, 5250: 99–108
doi: 10.1117/12.514597
2 GardnerL, KohlJ, CranmerS, . The advanced solar coronal explorer mission (ASCE).Proceedings of SPIE , 1999, 3764: 134–146
doi: 10.1117/12.371095
3 GrigonisM, KnystautasE J. C/Si multilayer mirrors for the 25–30 nm wavelength region. Applied Optics , 1997, 36(13): 2839–2842
doi: 10.1364/AO.36.002839
4 ZhangZ, WangZ S, QinS J, . The design of X-ray supermirror with broad angle range. Acta Photonica Sinica , 2003, 32(2): 253–256 (in Chinese)
5 VialJ C, SongX Y, LemaireP, . The solar high-resolution imager-coronagraph LYOT mission. Proceedings of SPIE , 2003, 4853: 479–489
doi: 10.1117/12.460291
6 WindtD L, DonguyS, SeelyJ F, . EUV multilayers for solar physics. Proceedings ofSPIE , 2004, 5168: 1–11
doi: 10.1117/12.506175
7 WangF L, WangZ S, QinS J, . Investigation of ultra-short-period W/C multilayers for soft X-ray optics. Chinese Optics Letters , 2005, 3(7): 425–427
8 ZhangZ, WangZ S, WangF L, . Design and fabrication of broad angular range depth-graded C/W multilayer mirror for hard X-ray optics. Chinese Optics Letters , 2005, 3(7): 422–424
9 ChenB, NiQ L, CaoJ H, . Development of a space soft X-ray and EUV normal incidence telescope. Optics and Precision Engineering , 2003, 11(4): 315–319 (in Chinese)
10 WangZ S, ZhangS M, WuW J, . B4C/Mo/Si high reflectivity multilayer mirror at 30.4 nm. Chinese Optics Letters , 2006, 4(10): 611–613
11 WangZ S, WangH C, ZhuJ T, . Broad angular multilayer analyzer for soft X-rays, Optics Express , 2006, 14(6): 2533–2538
12 WangZ S, WangH C, ZhuJ T, . Broadband multilayer polarizers for the extreme ultraviolet. Journal of Applied Physics , 2006, 99(5): 056108
13 WangZ S, WangH C, ZhuJ T, . Extreme ultraviolet broadband Mo/Y multilayer analyzers. Applied Physics Letters , 2006, 89(24): 241120
14 WangZ S, WangH C, ZhuJ T, . Broadband Mo/Si multilayer transmission phase retarders for the extreme ultraviolet. Applied Physics Letters , 2007, 90(3): 031901
15 WangH C, ZhuJ T, WangZ S, . Broadband Mo/Si multilayer analyzers for the 15–17 nm wavelength range. Thin Solid Films , 2006, 515(4): 2523–2526
16 SpillerE. Reflective multilayer coatings for the far UV region. Applied Optics , 1976, 15(10): 2333–2338
doi: 10.1364/AO.15.002333
17 WangZ S, MaY Y. Researches on extreme ultraviolet multilayers fabrication. Optical Technique , 2001, 27(6): 532–534 (in Chinese)
18 WangH C, WangZ S, QinS J, . Analysis of the reflectivity of Mo/Si multilayer film for soft X-ray. Acta Optica Sinica , 2003, 23(11): 1362–1365 (in Chinese)
19 WangZ S. Effect of film thickness errors on performance of soft X-ray multilayer. Optics and Precision Engineering , 2003, 11(2): 136–138 (in Chinese)
20 ZhuJ T, WangZ S, ZhangS M, . High reflectivity multilayer mirror for He-II radiation at 30.4 nm in solar physics application , In: Optical Interference Coatings 2007, Tucson: Optical Society of America , 2007, FA9
[1] Qingsong LEI,Jiang LI. High conductive and transparent Al doped ZnO films for a-SiGe:H thin film solar cells[J]. Front. Optoelectron., 2015, 8(3): 298-305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed