Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    0, Vol. 0 Issue (0) : 134-137    https://doi.org/10.1007/s12200-008-0033-1
Optical properties and structure of InAs quantum dots in near-infrared band
JIA Guozhi1, YAO Jianghong1, SHU Yongchun1, WANG Zhanguo2
1.The Key Lab of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials, Ministry of Education, Tianjin Key Laboratory of Photonics Materials and Technology for Information Science, TEDA Applied Physics School, Nankai University; 2.The Key Lab of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials, Ministry of Education, Tianjin Key Laboratory of Photonics Materials and Technology for Information Science, TEDA Applied Physics School, Nankai University;Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences
 Download: PDF(207 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The InAs quantum dots (QDs) grown by molecular beam epitaxy (MBE) are studied as a function of growth temperature at a specific InAs coverage of 2.7 ML. The QDs density is significantly reduced from 8.0 × 1010 to 5.0 × 109 cm-2 as the growth temperature increases from 480°C to 520°C, while the average QDs diameter and height becomes larger. The effects of the growth temperature on the evolution of bimodal QDs are investigated by combining atomic force microscopy (AFM) and photoluminescence (PL). Results show that the formation of the bimodal QDs depends on the growth temperature: at a growth temperature of 480°C, large QDs result from the small QDs coalition; at a growth temperature of 535°C, the indium desorption and InAs segregation result in the formation of small QDs.
Keywords quantum dot (QD)      molecular beam epitaxy (MBE)      atomic force microscopy (AFM)      photoluminescence (PL)     
Issue Date: 05 June 2008
 Cite this article:   
YAO Jianghong,JIA Guozhi,SHU Yongchun, et al. Optical properties and structure of InAs quantum dots in near-infrared band[J]. Front. Optoelectron., 0, 0(0): 134-137.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-008-0033-1
https://academic.hep.com.cn/foe/EN/Y0/V0/I0/134
1 Kang Y H, Park J, Lee U H, et al.. Effect of the dot size distribution on quantumdot infrared photoresponse and temperature-dependent dark current. Applied Physics Letters, 2003, 82(7): 1099–1101.
doi:10.1063/1.1555711
2 Shchekin O B, Park G, Huffaker D L, et al.. Discrete energy level separation and the thresholdtemperature dependence of quantum dot lasers. Applied Physics Letters, 2000, 77(4): 466–468.
doi:10.1063/1.127012
3 Mukhametzhanov I, Wei Z, Heitz R, et al.. Punctuated island growth: an approach to examinationand control of quantum dot density, size, and shape evolution. Applied Physics Letters, 1999, 75(1): 85–87.
doi:10.1063/1.124284
4 Fan X W, Shan C X, Yang Y, et al.. Growth and characterestics of ZnCdSe and ZnSeSquantum dots under S-K and V-W modes. ChineseJournal of Luminescence, 2005, 26(1): 9–14 (in Chinese)
5 Liu H W, Laskar I R, Huang C P, et al.. Synthesis and applications of luminescent CdSequantum dots for OLEDs. Chinese Journalof Luminescence, 2005, 26(3): 321–326
6 Li Y F, Han P D, Chen Z, et al.. Growth and property of surface stress inducedInGaN quantum dots. Chinese Journal ofSemiconductors, 2003, 24(1): 39–43 (in Chinese)
7 Lee H, Lowe-Webb R R, Yang W, et al.. Formation of InAs/GaAs quantum dots by molecularbeam epitaxy: reversibility of the islanding transition. Applied Physics Letters, 1997, 71(16)2325–2327.
doi:10.1063/1.120062
8 Schaffer W J, Lind M D, Kowalczyk S P, et al.. Nucleation and strain relaxation at the InAs/GaAs(100)heterojunction. Journal of Vacuum Scienceand Technology B, 1983, 1(3): 688–695.
doi:10.1116/1.582579
9 Foxon C T, Joyce B A . Surface processes controllingthe growth of GaxIn1–xAs and GaxIn1-xP alloy films byMBE. Journal of Crystal Growth, 1978, 44(1): 75–83.
doi:10.1016/0022-0248(78)90330-5
10 Leonard D, Krishnamurthy M, Fafard S, et al.. MBE Growth of quantum dots from strained coherentuniform islands of InGaAs on GaAs. Journalof Vacuum Science and Technology B, 1994, 12(2): 1063–1066.
doi:10.1116/1.587088
11 El-Emawy A A, Birudavolu S, Wong P S, et al.. Formation trends in quantum dot growth usingmetalorganic chemical vapor deposition. Journal of Applied Physics, 2003, 93(6): 3529–3534.
doi:10.1063/1.1543647
12 Dehaese O, Wallart X, Mollot F . Kinetic model of element III segregation during molecularbeam epitaxy of III-III8-V semiconductor compounds. Applied Physics Letters, 1995, 66(1): 52–54.
doi:10.1063/1.114180
13 Jung S I, Yeo H Y, Yun I, et al.. Photoluminescence study on the growth of self-assembledInAs quantum dots: formation characteristics of bimodal-sized quantumdot. Physica E, 2006, 33(1): 280–283.
doi:10.1016/j.physe.2006.03.150
14 Ribeiro E, Maltez R L, Carvalho W, et al.. Optical and structural properties of InAsP ternaryself-assembled quantum dots embedded in GaAs. Applied Physics Letters, 2002, 81(16): 2953–2955.
doi:10.1063/1.1513215
[1] Peng WANG, Aron MICHAEL, Chee Yee KWOK. Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM[J]. Front. Optoelectron., 2018, 11(1): 53-59.
[2] Yanxiong E,Zhibiao HAO,Jiadong YU,Chao WU,Lai WANG,Bing XIONG,Jian WANG,Yanjun HAN,Changzheng SUN,Yi LUO. Size-dependent optical properties of InGaN quantum dots in GaN nanowires grown by MBE[J]. Front. Optoelectron., 2016, 9(2): 318-322.
[3] Lai WANG,Wenbin LV,Zhibiao HAO,Yi LUO. Recent progresses on InGaN quantum dot light-emitting diodes[J]. Front. Optoelectron., 2014, 7(3): 293-299.
[4] E. KASPER, M. OEHME, J. WERNER, T. AGUIROV, M. KITTLER. Direct band gap luminescence from Ge on Si pin diodes[J]. Front Optoelec, 2012, 5(3): 256-260.
[5] Amin RANJBARAN. Temperature effects on output characteristics of quantum dot white light emitting diode[J]. Front Optoelec, 2012, 5(3): 284-291.
[6] Guangcun SHAN, Xinghai ZHAO, Mingjun HU, Chan-Hung SHEK, Wei HUANG. Vertical-external-cavity surface-emitting lasers and quantum dot lasers[J]. Front Optoelec, 2012, 5(2): 157-170.
[7] Yijie HUO, Hai LIN, Robert CHEN, Yiwen RONG, Theodore I. KAMINS, James S. HARRIS. MBE growth of tensile-strained Ge quantum wells and quantum dots[J]. Front Optoelec, 2012, 5(1): 112-116.
[8] Zhongwei SHI, Lirong HUANG, Yi YU, Peng TIAN, Hanchao WANG. Influence of V/III ratio on QD size distribution[J]. Front Optoelec Chin, 2011, 4(4): 364-368.
[9] Davinder RATHEE, Sandeep K ARYA, Mukesh KUMAR. Analysis of TiO2 for microelectronic applications: effect of deposition methods on their electrical properties[J]. Front Optoelec Chin, 2011, 4(4): 349-358.
[10] Caixia SONG, Yuwei SUN, Yaohua XU, Debao WANG. Synthesis and optical property of ZnO nano-/micro-rods[J]. Front Optoelec Chin, 2011, 4(2): 156-160.
[11] Pijus Kanti SAMANTA, Partha Roy CHAUDHURI. Substrate effect on morphology and photoluminescence from ZnO monopods and bipods[J]. Front Optoelec Chin, 2011, 4(2): 130-136.
[12] Weiming WANG, Jun YANG, Xin ZHU, Jamie PHILLIPS. Intermediate-band solar cells based on dilute alloys and quantum dots[J]. Front Optoelec Chin, 2011, 4(1): 2-11.
[13] Jieying KONG, Bin LIU, Rong ZHANG, Zili XIE, Yong ZHANG, Xiangqian XIU, Youdou ZHENG. Optical properties of InN films grown by MOCVD[J]. Front Optoelec Chin, 2008, 1(3-4): 341-344.
[14] Guoliang LIU, Jianghong YAO, Jingjun XU, Zhanguo WANG. Temperature dependence of photoluminescence of QD arrays[J]. Front Optoelec Chin, 2008, 1(3-4): 258-262.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed