Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2008, Vol. 1 Issue (3-4) : 247-257    https://doi.org/10.1007/s12200-008-0034-0
Research Article
Analyses and calculations of noise in optical coherence tomography systems
Xiaonong ZHU1(), Yanmei LIANG1, Youxin MAO2, Yaqing JIA1, Yiheng LIU1, Guoguang MU1
1. Institute of Modern Optics, Nankai University, Key Laboratory of Opto-electronic Information Science and Technology, Ministry of Education; 2. Institute for Microstructural Science, National Research Council Canada
 Download: PDF(242 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Significant progress has been made in the study of optical coherence tomography (OCT) - a non-invasive, high resolution, and in vivo diagnostic method for medical imaging applications. In this paper, the principles of noise analyses for OCT systems have been described. Comparisons are made of signal-to-noise ratios for both balanced and unbalanced detection schemes under the ideal no-stray light situation as well as the non-ideal situation where residual reflections and scatterings are presented. Numerical examples of noise calculation accompanied by detailed comparison of the main characteristics of both time-domain and frequency-domain OCT systems are also presented. It is shown that a larger dynamic range can be achieved for a Fourier-domain OCT system even under the circumstances of high-speed image acquisition. The main results presented in this paper should be useful for the development of high performance OCT systems.

Keywords optical coherence tomography (OCT)      noise analyses      sensitivity      signal-to-noise ratio (SNR)     
Corresponding Author(s): ZHU Xiaonong,Email:xnzhu1@nankai.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Xiaonong ZHU,Yanmei LIANG,Youxin MAO, et al. Analyses and calculations of noise in optical coherence tomography systems[J]. Front Optoelec Chin, 2008, 1(3-4): 247-257.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-008-0034-0
https://academic.hep.com.cn/foe/EN/Y2008/V1/I3-4/247
Fig0  Schematics of optical layouts.(a) Time-domain OCT systems; (b) frequency-domain OCT systems
1 HuangD, SwansonE A, LinC P, . Optical coherence tomography. Science , 1991, 254(5035): 1178–1181
doi: 10.1126/science.1957169
2 SchmittJ M. Optical Coherence Tomography (OCT): a review. IEEE Journal of Selected Topics in Quantum Electronics , 1999, 5(4): 1205–1215
doi: 10.1109/2944.796348
3 FercherA F, DrexlerW, HitzenbergerC K, . Optical coherence tomography - principles and applications. Reports on Progress in Physics , 2003, 66(2): 239–303
doi: 10.1088/0034-4885/66/2/204
4 De BoerJ F, MilnerT E, Van GemertM J C, . Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Optics Letters , 1997, 22(12): 934–936
doi: 10.1364/OL.22.000934
5 OhJ-T, KimS-W. Polarization-sensitive optical coherence tomography for photoelasticity testing of glass/epoxy composites. Optics Express , 2003, 11(14): 1669–1676
6 ChenZ P, MilnerT E, DaveD, . Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Optics Lett ers, 1997, 22(1): 64–66
doi: 10.1364/OL.22.000064
7 ChenZ P, MilnerT E, SrinivasS, . Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Optics Letters , 1997, 22(14): 1119–1121
doi: 10.1364/OL.22.001119
8 SchmittJ M, XiangS H, YungK M. Differential absorption imaging with optical coherence tomography. Journal of the Optical Society of American A , 1998, 15(9): 2288–2296
doi: 10.1364/JOSAA.15.002288
9 WojtkowskiM, BajraszewskiT, TargowskiP, . Real-time in vivo imaging by high-speed spectral optical coherence tomography. Optics Letters , 2003, 28(19): 1745–1747
doi: 10.1364/OL.28.001745
10 JiaY Q, LiangY M, MuG G, . Analysis of fast scanning system in optical coherence tomography. Chinese Journal of Laser Medicine & Surgery , 2006, 15(1): 62–65 (in Chinese)
11 LeitgebR, HitzenbergerC K, FercherA F. Performance of Fourier domain vs. time domain optical coherence tomography. Optics Express , 2003, 11(8): 889–894
12 YunS H, TearneyG J, BoumaB E, . High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength. Optics Express , 2003, 11(26): 3598–3604
13 MansuripurM. The Physical Principles of Magneto-optical Recording. London: Cambridge University Press, 1998, 295–306
14 RollinsA M, IzattJ A. Optimal interferometer designs for optical coherence tomography. Optics Letters , 1999, 24(21): 1484–1486
doi: 10.1364/OL.24.001484
15 PodoleanuA G. Unbalanced versus balanced operation in an optical coherence tomography system. Applied Optics , 2000, 39(1): 173–182
doi: 10.1364/AO.39.000173
16 TakadaK. Noise in optical low-coherence reflectometry. IEEE Journal of Quantum Electronics , 1998, 34(7): 1098–1108
doi: 10.1109/3.687850
17 SchmittJ M, XiangS H, YungK M. Speckle in optical coherence tomography. Journal of Biomedical Optics , 1999, 4(1): 95–105
doi: 10.1117/1.429925
18 YunS H, TearneyG J, De BoerJ F, . High-speed optical frequency-domain imaging. Optics Express , 2003, 11(22): 2953–2963
19 NassifN A, CenseB, ParkB H, . In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Optics Express , 2004, 12(3): 367–376
doi: 10.1364/OPEX.12.000367
20 WojtkowskiM, SrinivasanV J, KoT H, . Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Optics Express , 2004, 12(11): 2404–2422
doi: 10.1364/OPEX.12.002404
21 ChomaM A, SarunicM V, YangC, . Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express , 2003, 11(18): 2183–2189
22 De BoerJ F, CenseB, ParkB H, . Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Optics Letters , 2003, 28(21): 2067–2069
doi: 10.1364/OL.28.002067
23 HuberR, AdlerD C, FujimotoJ G. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Optics Letters , 2006, 31(20): 2975–2977
doi: 10.1364/OL.31.002975
[1] Sergey Yu. KSENOFONTOV, Pavel A. SHILYAGIN, Dmitry A. TERPELOV, Valentin M. GELIKONOV, Grigory V. GELIKONOV. Numerical method for axial motion artifact correction in retinal spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2020, 13(4): 393-401.
[2] Jonas OGIEN, Anthony DAURES, Maxime CAZALAS, Jean-Luc PERROT, Arnaud DUBOIS. Line-field confocal optical coherence tomography for three-dimensional skin imaging[J]. Front. Optoelectron., 2020, 13(4): 381-392.
[3] Etu PODDER, Md. Bellal HOSSAIN, Rayhan Habib JIBON, Abdullah Al-Mamun BULBUL, Himadri Shekhar MONDAL. Chemical sensing through photonic crystal fiber: sulfuric acid detection[J]. Front. Optoelectron., 2019, 12(4): 372-381.
[4] Mingzhu SONG, Hongsong QU, Guixiang ZHANG, Guang JIN. Detection of small ship targets from an optical remote sensing image[J]. Front. Optoelectron., 2018, 11(3): 275-284.
[5] Vasily A. MATKIVSKY, Alexander A. MOISEEV, Sergey Yu. KSENOFONTOV, Irina V. KASATKINA, Grigory V. GELIKONOV, Dmitry V. SHABANOV, Pavel A. SHILYAGIN, Valentine M. GELIKONOV. Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography[J]. Front. Optoelectron., 2017, 10(3): 323-328.
[6] Jun LIU, Jianguo XIN, Ye LANG, Jiabin CHEN. Slab Yb:YAG pulse amplifier with high amplification gain and signal-to-noise ratio[J]. Front. Optoelectron., 2017, 10(1): 51-56.
[7] Swapnajit CHAKRAVARTY,Xiangning CHEN,Naimei TANG,Wei-Cheng LAI,Yi ZOU,Hai YAN,Ray T. CHEN. Review of design principles of 2D photonic crystal microcavity biosensors in silicon and their applications[J]. Front. Optoelectron., 2016, 9(2): 206-224.
[8] Saeed OLYAEE,Hassan ARMAN. Improved gas sensor with air-core photonic bandgap fiber[J]. Front. Optoelectron., 2015, 8(3): 314-318.
[9] Zhenyang DING,Chia-Pin LIANG,Yu CHEN. Technology developments and biomedical applications of polarization-sensitive optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 128-140.
[10] Zhihua DING,Yi SHEN,Wen BAO,Peng LI. Fourier domain optical coherence tomography with ultralong depth range[J]. Front. Optoelectron., 2015, 8(2): 163-169.
[11] Jian GAO,Xiao PENG,Peng LI,Zhihua DING,Junle QU,Hanben NIU. Vascular distribution imaging of dorsal skin window chamber in mouse with spectral domain optical coherence tomography[J]. Front. Optoelectron., 2015, 8(2): 170-176.
[12] Guodong WANG, Yunjian WANG, Na LI. Axial strain sensitivity analysis of long period fiber grating by new transfer matrix method[J]. Front Optoelec Chin, 2011, 4(4): 430-433.
[13] Xin LIU, Deming LIU, Wei WU, Zheng QIN. A modified dual-wavelength matrix calculation method[J]. Front Optoelec Chin, 2009, 2(3): 285-288.
[14] Shaomin LI, Xiaoying LIU, Chong LIU. FBG sensing temperature characteristic and application in oil/gas down-hole measurement[J]. Front Optoelec Chin, 2009, 2(2): 233-238.
[15] Ming WEI, Jun QIAN, Qiuqiang ZHAN, Fuhong CAI, Arash GHARIBI, Sailing HE. Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods[J]. Front Optoelec Chin, 2009, 2(2): 141-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed