|
|
|
Guided properties and applications of photonic
bandgap fibers |
| WANG Zhi, LIU Yange, KAI Guiyun, LIU Bo, ZHANG Chunshu, JIN Long, FANG Qiang, YUAN Shuzhong, DONG Xiaoyi |
| Institute of Modern Optics, Nankai University; |
|
|
|
|
Abstract The authors have reviewed some of their recent studies on photonic bandgap fibers (PBGFs). PBGFs that confine light in the core by the photonic bandgap effect of cladding have potential applications in various photonic devices. In this paper, the guided properties and tuned mechanics of anti-resonant PBGFs are theoretically illustrated. The special coupling properties in multi-core PBGFs, such as decoupling and resonant coupling effect, are then introduced. Finally, fiber Bragg grating inscribed in all-solid PBGFs is theoretically and experimentally studied, and special resonant characteristics are also observed.
|
|
Issue Date: 05 June 2008
|
|
| 1 |
Birks T A, Knight J C, Russell P S J . Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961–963. doi:10.1364/OL.22.000961
|
| 2 |
Knight J C, Arriaga J, Birks T A, et al.. Anomalous dispersion in photonic crystal fiber. IEEE Photonics Technology Letters, 2000, 12(7): 807–809. doi:10.1109/68.853507
|
| 3 |
Broderick N G R, Monro T M, Bennett P J, et al.. Nonlinearity in holey optical fibers: measurementand future opportunities. Optics Letters, 1999, 24(20): 1395–1397. doi:10.1364/OL.24.001395
|
| 4 |
Knight J C . Photonic crystal fibres. Nature, 2003, 424(6950): 847–851. doi:10.1038/nature01940
|
| 5 |
Cregan R F, Mangan B J, Knight J C, et al.. Single-mode photonic band gap guidance of lightin air. Science, 1999, 285(5433): 1537–1539. doi:10.1126/science.285.5433.1537
|
| 6 |
Couny F, Benabid F, Light P S . Large-pitch kagome-structured hollow-core photonic crystalfiber. Optics Letters, 2006, 31(24): 3574–3576. doi:10.1364/OL.31.003574
|
| 7 |
Benabid F, Knight J C, Antonopoulos G, et al.. Stimulated Raman scattering in hydrogen-filledhollow-core photonic crystal fiber. Science, 2002, 298(5592): 399–402. doi:10.1126/science.1076408
|
| 8 |
Ouzounov D G, Ahmad F R, Müller D, et al.. Generation of megawatt optical solitons in hollow-corephotonic band-gap fibers. Science, 2003, 301(5640): 1702–1704. doi:10.1126/science.1088387
|
| 9 |
Limpert J, Schreiber T, Nolte S, et al.. All fiber chirped-pulse amplification systembased on compression in air-guiding photonic bandgap fiber. Optics Express, 2003, 11(24): 3332–3337
|
| 10 |
Litchinitser N M, Abeeluck A K, Headley C, et al.. Antiresonant reflecting photonic crystal opticalwaveguides. Optics Letters, 2002, 27(18): 1592–1594. doi:10.1364/OL.27.001592
|
| 11 |
Litchinitser N M, Dunn S C, Steinvurzel P E, et al.. Application of an ARROW model for designingtunable photonic devices. Optics Express, 2004, 12(8): 1540–1550. doi:10.1364/OPEX.12.001540
|
| 12 |
Argyros A, Birks T A, Leon-Saval S G, et al.. Guidance properties of low-contrast photonicbandgap fibres. Optics Express, 2005, 13(7): 2503–2511. doi:10.1364/OPEX.13.002503
|
| 13 |
Zhang C S, Kai G Y, Wang Z, et al.. Transformation of a transmission mechanism byfilling the holes of normal silica-guiding microstructure fibers withnematic liquid crystal. Optics Letters, 2005, 30(18): 2372–2374. doi:10.1364/OL.30.002372
|
| 14 |
Wang Z, Kai G Y, Liu Y G, et al.. Coupling and decoupling of dual-core photonicbandgap fibers. Optics Letters, 2005, 30(19): 2542–2544. doi:10.1364/OL.30.002542
|
| 15 |
Zhang C S, Kai G Y, Wang Z, et al.. Tunable highly birefringent photonic bandgapfibers. Optics Letters, 2005, 30(20): 2703–2705. doi:10.1364/OL.30.002703
|
| 16 |
Zhang C S, Kai G Y, Wang Z, et al.. Simulations of effect of high-index materialson highly birefringent photonic crystal fibres. Chinese Physics Letters, 2005, 22(11): 2858–2861. doi:10.1088/0256-307X/22/11/037
|
| 17 |
Zhang C S, Kai G Y, Wang Z, et al.. Design of tunable bandgap guidance in high-indexfilled microstructure fibers. Journal ofthe Optical Society of America B–Optical Physics, 2006, 23(4): 782–786. doi:10.1364/JOSAB.23.000782
|
| 18 |
Wang Z, Taru T, Birks T A, et al.. Coupling in dual-core photonic bandgap fibers:theory and experiment. Optics Express, 2007, 15(8): 4795–4803. doi:10.1364/OE.15.004795
|
| 19 |
Wang Z, Liu Y G, Kai G Y, et al.. Directional couplers operated by resonant couplingin all-solid photonic bandgap fibers. OpticsExpress, 2007, 15(14): 8925–8930. doi:10.1364/OE.15.008925
|
| 20 |
Fang Q, Wang Z, Kai G Y, et al.. Proposal for all-solid photonic bandgap fiberwith improved dispersion characteristics. IEEE Photonics Technology Letters, 2007, 19(16): 1239–1241. doi:10.1109/LPT.2007.902233
|
| 21 |
Jin L, Wang Z, Fang Q, et al.. Bragg grating resonances in all-solid bandgapfibers. Optics Letters, 2007, 32(18): 2717–2719. doi:10.1364/OL.32.002717
|
| 22 |
Skorobogatiy M, Saitoh K, Koshiba M . Transverse lightwave circuits in microstructured opticalfibers: resonator arrays. Optics Express, 2006, 14(4): 1439–1450. doi:10.1364/OE.14.001439
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|