Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2008, Vol. 1 Issue (3-4) : 258-262    https://doi.org/10.1007/s12200-008-0050-0
Research Article
Temperature dependence of photoluminescence of QD arrays
Guoliang LIU1, Jianghong YAO1(), Jingjun XU1, Zhanguo WANG2
1. The Key Laboratory of Advanced Technique and Fabrication for Weak-Light Nonlinear Photonics Materials, Tianjin Key Laboratory of Photonics Materials and Technology for Information Science, TEDA Applied Physics School, Nankai University; 2. Institute of Semiconductors, Chinese Academy of Sciences
 Download: PDF(129 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

It is essentially important to understand the temperature dependence of the photoluminescence of multimodal quantum dot (QD) arrays for the realization of efficient photonic devices. In this paper, the dynamics processes of different density multimodal QD arrays were fitted by using the rate equation model. It is shown that, in high density QD arrays, the intensity of photoluminescence of different QD families has different temperature dependence, and the intensity of photoluminescence is quenched as the temperature increases in low density QD arrays. In high density QD arrays, as the temperature increases, the carriers will be thermally excited into the wetting layer from QDs, and then some of them will be recaptured by the big scale QDs; carrier coupling takes place between the different QD families, while in low density QD arrays, the carrier transfer between different QD families will be limited. Temperature dependence of the maximum of the ratio of photoluminescence intensity of different QD families strongly depends on the difference of thermal activation energies.

Keywords optoelectronics      rate equation      photoluminescence      multimodal quantum dot (QD) arrays      thermally excited     
Corresponding Author(s): YAO Jianghong,Email:yaojh@nankai.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Guoliang LIU,Jianghong YAO,Jingjun XU, et al. Temperature dependence of photoluminescence of QD arrays[J]. Front Optoelec Chin, 2008, 1(3-4): 258-262.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-008-0050-0
https://academic.hep.com.cn/foe/EN/Y2008/V1/I3-4/258
Fig0  Model of carrier dynamics processes in multimodal QD arrays
quantumcapture ratecombination ratenon-radiation ratedot densitygeneration ratestate density of wetting layerthermal excitation rate
iC/HzR/HzR′/HzND/cm-2g/HzNWL/cm-2Re′/Hz
QD11 × 10131 × 1091 × 10111.7 × 10111 × 1054.7 × 10171 × 1014
QD20.8 × 10131 × 1091 × 10113 × 10101 × 1054.7 × 10171 × 1014
Tab0  Parameters used in theoretical simulation of dense QD arrays
1 HeinrichsdorffF, RibbatC, GrundmannM, . High-power quantum-dot lasers at 1100 nm. Applied Physics Letters , 2000, 76(5): 556–558
doi: 10.1063/1.125816
2 KrebsR, KlopfF, RennonS, . High frequency characteristics of InAs/GaInAs quantum dot distributed feedback lasers emitting at 1.3 μm. Electronics Letters , 2001, 37(20): 1223–1225
3 RebohleL, SchreyF F, HoferS, . Energy level engineering in InAs quantum dot nanostructures. Applied Physics Letters , 2002, 81(11): 2079–2081
doi: 10.1063/1.1506419
4 WangJ, XingD. Overview of the research on quantum-dot lasers. Chinese Journal of Quantum Electronics , 2003, 20(2): 129–134 (in Chinese)
5 TommJ W, ElsaesserT, MazurY I, . Transient luminescence of dense InAs/GaAs quantum dot arrays. Physical Review B , 2003, 67(4): 045326 .
6 KongL M, CaiJ F, ChenZ R, . Studies on time-resolved photoluminescence spectrum of wetting layer and quantum dots in the structure of self-organized quantum dots. Chinese Journal of Quantum Electronics , 2003, 20(2), 208–212 (in Chinese)
7 BrusaferriL, SanguinettiS, GrilliE, . Thermally activated carrier transfer and luminescence line shape in self-organized InAs dots. Applied Phsics Letters , 1996, 69(22): 3354–3356
doi: 10.1063/1.117304
8 de SalesF V, CruzJ M R, da SilvaS W, . Carrier kinetics in quantum dots through continuous wave photoluminescence modeling: A systematic study on a sample with surface dot density gradient. Journal of Appled Physics , 2003, 94(3): 1787–1794
doi: 10.1063/1.1586953
9 ZhangY C, HuangC J, LiuF Q, . Temperature dependence of electron redistribution in modulation-doped InAs/GaAs quantum dots. Journal of Crystal Growth , 219(3): 199–204
10 WangJ Z, YangZ, YangC L. Photoluminescence of InAs quantum dots grown on GaAs surface. Applied Physics Letters , 2000, 77(18): 2837–2839
doi: 10.1063/1.1320854
11 MarcinkeviciusS, LeonR. Photoexcited carrier transfer in InGaAs quantum dot structures: dependence on the dot density. Applied Physics Letters , 2000, 76(17): 2406–2408
doi: 10.1063/1.126359
12 DaiZ H, SunJ Z, ZhangL D, . Study on the coupled multiple nanocrystal quantum-dot system. Physica E , 2003, 18(4): 412–420
doi: 10.1016/S1386-9477(03)00179-6
[1] Rashad F. KAHWAGI, Sean T. THORNTON, Ben SMITH, Ghada I. KOLEILAT. Dimensionality engineering of metal halide perovskites[J]. Front. Optoelectron., 2020, 13(3): 196-224.
[2] Santosh K. GUPTA, Yuanbing MAO. Recent advances, challenges, and opportunities of inorganic nanoscintillators[J]. Front. Optoelectron., 2020, 13(2): 156-187.
[3] Ruiqing HU, Yifeng SHI, Haifeng BAO. Luminescent disordered nanostructures: synthesis and characterization of CdSe nano-agglomerates[J]. Front. Optoelectron., 2018, 11(4): 385-393.
[4] Tieshan YANG, Han LIN, Baohua JIA. Two-dimensional material functional devices enabled by direct laser fabrication[J]. Front. Optoelectron., 2018, 11(1): 2-22.
[5] Ran YAO,Dawei ZHANG,Bing ZOU,Jian XU. Junction temperature measurement of alternating current light-emitting-diode by threshold voltage method[J]. Front. Optoelectron., 2016, 9(4): 555-559.
[6] Yanxiong E,Zhibiao HAO,Jiadong YU,Chao WU,Lai WANG,Bing XIONG,Jian WANG,Yanjun HAN,Changzheng SUN,Yi LUO. Size-dependent optical properties of InGaN quantum dots in GaN nanowires grown by MBE[J]. Front. Optoelectron., 2016, 9(2): 318-322.
[7] Ming LI,José AZA?A,Ninghua ZHU,Jianping YAO. Recent progresses on optical arbitrary waveform generation[J]. Front. Optoelectron., 2014, 7(3): 359-375.
[8] E. KASPER, M. OEHME, J. WERNER, T. AGUIROV, M. KITTLER. Direct band gap luminescence from Ge on Si pin diodes[J]. Front Optoelec, 2012, 5(3): 256-260.
[9] Yijie HUO, Hai LIN, Robert CHEN, Yiwen RONG, Theodore I. KAMINS, James S. HARRIS. MBE growth of tensile-strained Ge quantum wells and quantum dots[J]. Front Optoelec, 2012, 5(1): 112-116.
[10] Zhongwei SHI, Lirong HUANG, Yi YU, Peng TIAN, Hanchao WANG. Influence of V/III ratio on QD size distribution[J]. Front Optoelec Chin, 2011, 4(4): 364-368.
[11] Caixia SONG, Yuwei SUN, Yaohua XU, Debao WANG. Synthesis and optical property of ZnO nano-/micro-rods[J]. Front Optoelec Chin, 2011, 4(2): 156-160.
[12] Pijus Kanti SAMANTA, Partha Roy CHAUDHURI. Substrate effect on morphology and photoluminescence from ZnO monopods and bipods[J]. Front Optoelec Chin, 2011, 4(2): 130-136.
[13] Jiang WU, Xu LIU. Challenges of spatial 3D display techniques to optoelectronics[J]. Front Optoelec Chin, 2009, 2(4): 355-361.
[14] Jieying KONG, Bin LIU, Rong ZHANG, Zili XIE, Yong ZHANG, Xiangqian XIU, Youdou ZHENG. Optical properties of InN films grown by MOCVD[J]. Front Optoelec Chin, 2008, 1(3-4): 341-344.
[15] JIA Guozhi, YAO Jianghong, SHU Yongchun, WANG Zhanguo. Optical properties and structure of InAs quantum dots in near-infrared band[J]. Front. Optoelectron., 2008, 1(1-2): 134-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed