Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front Optoelec Chin    2008, Vol. 1 Issue (3-4) : 292-298    https://doi.org/10.1007/s12200-008-0052-y
Review Article
Progress of super-resolution near-field structure in near-field optical storage technology
Xiaofei YANG(), Qian LI, Xiaomin CHENG
Department of Electronics Sciences and Technology, Huazhong University of Science and Technology
 Download: PDF(249 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Super-resolution near-field structure (Super-RENS) is one of the most promising near-field optical recording schemes with significant application prospects. The development of Super-RENS from the basic type to the third-generation is introduced. The development of mask material and the application of Super-RENS in different recording systems are summarized.

Keywords super-resolution near-field structure (Super-RENS)      mask material      third-generation Super-RENS      recording system     
Corresponding Author(s): YANG Xiaofei,Email:yangxiaofei@mail.hust.edu.cn   
Issue Date: 05 September 2009
 Cite this article:   
Xiaofei YANG,Qian LI,Xiaomin CHENG. Progress of super-resolution near-field structure in near-field optical storage technology[J]. Front Optoelec Chin, 2008, 1(3-4): 292-298.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-008-0052-y
https://academic.hep.com.cn/foe/EN/Y2008/V1/I3-4/292
Fig0  Aperture style Super-RENS
1 ZhangS L. Near-field Optical Microscopy and Its Applications. Beijing: Science Press, 2000, 101–150 (in Chinese)
2 BetzigE, TrautmanJ K, WolfeR, . Near-field magnet-optics and high density data storage. Applied Physics Letters , 1992, 61(2): 142–144
doi: 10.1063/1.108198
3 TominagaJ, NakanoT, AtodaN. An approach for recording and readout beyond the diffraction limit with an Sb thin film. Applied Physics Letters , 1998, 73(15): 2078–2080
doi: 10.1063/1.122383
4 FukayaT, TominagaJ, NakanoT, . Optical switching property of a light-induced pinhole in antimony thin film. Applied Physics Letters , 1999, 75(20): 3114–3116
doi: 10.1063/1.125248
5 TominagaJ, FujiH, SatoA, . The characteristics and the potential of super resolution near-field structure. Japanese Journal of Applied Physics , 2000, 39(Part 1, 2B): 957–961
doi: 10.1143/JJAP.39.957
6 MenL, TominagaJ, FujiH, . High-density optical data storage using scattering-mode super-resolution near-field structure. Proceedings of SPIE , 2001, 4085: 204–207
doi: 10.1117/12.416843
7 MenL, TominagaJ, FujiH, . Oxygen doping effects on super-resolution scattering-mode near-field optical data storage. Japanese Journal of Applied Physics , 2000, 39(Part 1, 5A): 2639–2642
doi: 10.1143/JJAP.39.2639
8 TominagaJ, TsaiD P. Optical Nanotechnologies: The Manipulation of Surface and Local Plasmons. Berlin: Springer-Velag, 2003, 49–58
9 TominagaJ, KimJ H, FujiH, . Super-resolution near-field structure and signal enhancement by surface plasmons. Japanese Journal of Applied Physics , 2001, 40(3B): 1831–1834
doi: 10.1143/JJAP.40.1831
10 ShiL P, ChongT C, MiaoX S, . A new structure of super-resolution near-field phase-change optical disk with a Sb2Te3 mask layer. Japanese Journal of Applied Physics , 2001, 40(3B): 1649–1650
doi: 10.1143/JJAP.40.1649
11 ShiL P, ChongT C, YaoH B, . Super-resolution near-field optical disk with an additional localized surface plasmon coupling layer. Journal of Applied Physics , 2002, 91(12): 10209–10211
doi: 10.1063/1.1476068
12 ShiL P, ChongT C, TanP K, . Super-resolution near-field phase change disk with Sb70Te30 mask layer. Japanese Journal of Applied Physics , 2004, 43(7B): 5001–5005
doi: 10.1143/JJAP.43.5001
13 LinW C, KaoT S, ChangH H, . Study of a super-resolution optical structure: polycarbonate/ZnS-SiO2/ZnO/ZnS-SiO2/Ge2Sb2Te5/ZnS-SiO2. Japanese Journal of Applied Physics , 2003, 42(Part 1, 2B): 1029–1030
doi: 10.1143/JJAP.42.1029
14 KimJ H, HwangI, YoonD, . Super-resolution near-field structure with alternative recording and mask materials. Japanese Journal of Applied Physics , 2003, 42(Part 1, 2B): 1014–1017
doi: 10.1143/JJAP.42.1014
15 ZhangF, WangY, XuW D, . Static recording characteristics of super-resolution near-field structure with bismuth mask layer. Proceedings of SPIE , 2005, 5966: 596619-1–596619-4
16 KikukawaT, NakanoT, ShimaT, . Rigid bubble pit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer. Applied Physics Letters , 2002, 81(25): 4697–4699
doi: 10.1063/1.1529078
17 KimJ H, HwangI, YoonD, . Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layers. Applied Physics Letters , 2003, 83(9): 1701–1703
doi: 10.1063/1.1605794
18 KimJ H, BüechelD, NakanoT, . Magneto-optical disk properties enhanced by a nonmagnetic mask layer. Applied Physics Letters , 2000, 77(12): 1774–1776
doi: 10.1063/1.1290489
19 KimJ H, KuwaharaM, AtodaN, . Reactive recording with rare-earth transition metal. Applied Physics Letters , 2001, 79(16): 2600–2602
doi: 10.1063/1.1409951
20 HsuW C, TsengM R, TsaiS Y, . Blue-laser readout properties of super resolution near field structure disc with inorganic write-once recording layer. Japanese Journal of Applied Physics , 2003, 42(Part 1, 2B): 1005–1009
doi: 10.1143/JJAP.42.1005
21 KimJ H, HwangI, KimH K, . Random pattern signal characteristics of super-RENS disk in blue laser system. Proceedings of SPIE , 2004, 5380: 336–341
doi: 10.1117/12.557100
22 AraiT, KuriharaK, NakanoT, . Carrier-to-noise ratio enhancement of super-resolution near-field structure disks by Ag nanostructure. Applied Physics Letters , 2006, 88(5): 051104-1–051104-3
doi: 10.1063/1.2172017
23 ZhangF, WangY, XuW Z, . Super-resolution near field structure technology and its applications. Optical Technique , 2003, 29(5): 518–522 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed