Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

Postal Subscription Code 80-976

Front. Optoelectron.    2008, Vol. 1 Issue (1-2) : 44-49    https://doi.org/10.1007/s12200-008-0055-8
Overcoming ill-posedness of diffuse optical tomography in steady-state domain
QUAN Guotao, BI Kun, ZENG Shaoqun, LUO Qingming
The Key Laboratory of Biomedical Photonics of Ministry of Education, Huazhong University of Science and Technology
 Download: PDF(294 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In recent decades, diffuse optical tomography (DOT) has drawn more and more interest in molecular imaging because of its advantage of large penetration depth in optical image technology. However, ill-posedness problems have dramatically limited this application technique. In this paper, a new method to remove the ill-posedness of DOT is introduced. With a rotating steady-state domain experiment system, by increasing experimental data that could be obtained from any visual angle, four contrast experiments were simulated. It was proved that when the sum of the experiment data is larger than that of the unknown optical coefficient of phantom, ill-posedness would be reduced and the quality of the reconstructed image could be improved.
Issue Date: 05 June 2008
 Cite this article:   
BI Kun,QUAN Guotao,ZENG Shaoqun, et al. Overcoming ill-posedness of diffuse optical tomography in steady-state domain[J]. Front. Optoelectron., 2008, 1(1-2): 44-49.
 URL:  
https://academic.hep.com.cn/foe/EN/10.1007/s12200-008-0055-8
https://academic.hep.com.cn/foe/EN/Y2008/V1/I1-2/44
1 Wells K, Hebden J C, Schmidt F E W, et al.. The UCL multichannel time-resolved system foroptical tomography. In: Chance B, Alfano R R, eds. Optical Tomographyand Spectroscopy of Tissue: Theory, Instrumentation, Model, and HumanStudies II. San Jose: SPIE, 1997, 2979599–607
2 van Houten J P, Benaron D A, Spilman S, et al.. Imaging brain injury using time-resolved nearinfrared light scanning. Pediatric Research, 1996, 39(3): 470–476.
doi:10.1203/00006450-199603000-00015
3 Miwa M, Ueda Y . Development of time-resolvedspectroscopy system for quantitative noninvasive tissue measurement. In: Chance B, AlfanoR R, eds. Optical Tomography, Photon Migration, andSpectroscopy of Tissue and Model Media: Theory, Human Studies, andInstrumentation. San Jose: SPIE, 1995, 2389: 142–149
4 Ntziachristos V, Ripoll J, Wang L H, et al.. Looking and listening to light: the evolutionof whole-body photonic imaging. NatureBiotechnology, 2005, 23(3): 313–320.
doi:10.1038/nbt1074
5 Franceschini M A, Moesta K T, Fantini S, et al.. Frequency-domain techniques enhance opticalmammography: initial clinical results. Proceedings of the National Academy of Sciences of the United Statesof America, 1997, 94(12): 6468–6473.
doi:10.1073/pnas.94.12.6468
6 Hielscher A H, Bartel S . Overcoming ill-posednessin optical tomography. In: Hanson K M, ed. Medical Imaging 2000: Image Processing. SanDiego: SPIE, 2000, 3979: 575–585
7 Abdoulaev G S, Hielscher A H . Three-dimensional opticaltomography with the equation of radiative transfer. Jounal of Electronic Imaging, 2003, 12(4): 594–601.
doi:10.1117/1.1587730
8 Wright S, Schweiger M, Arridge S R . Solutions to the transport equation using variable orderangular basis. In: Kai Licha, Rinaldo Cubeddu, eds. Photon Migrationand Diffuse-Light Imaging II. Munich: SPIE, 2005, 5859: 585914.1–585914.8
9 Ren K, Abdoulaev G S, Bal G, et al.. Algorithm for solving the equation of radiativetransfer in the frequency domain. OpticsLetters, 2004, 29(6): 578–580.
doi:10.1364/OL.29.000578
10 Tarvainen T, Vauhkonen M, Kolehmainen V, et al.. Finite element model for the coupled radiativetransfer equation and diffusion approximation. International Journal for Numerical Methods in Engineering, 2006, 65(3): 383–405.
doi:10.1002/nme.1451
11 Arridge S R . Optical tomography in medical imaging. Inverse Problems, 1999, 15(2): 41–93.
doi:10.1088/0266-5611/15/2/022
12 Schweiger M, Arridge S R, Hiraoka M, et al.. The finite element method for the propagationof light in scattering media:Boundary and source conditions. Medical Physics, 1995, 22(11): 1779–1792.
doi:10.1118/1.597634
13 Cong A X, Wang G . A finite-element-based reconstructionmethod for 3D fluorescence tomography. Optics Express, 2005, 13(24): 9847–9857.
doi:10.1364/OPEX.13.009847
14 Lee J H, Kim S, Kim Y T . Finite element method for diffusive light propagationsin index-mismatched media. Optics Express, 2004, 12(8): 1727–1740.
doi:10.1364/OPEX.12.001727
15 Arridge S R, Schweiger M . Photon-measurement densityfunctions part 2: finite-element-method calculations. Applied Optics, 1995, 34(34): 8026–8037
16 Roy R, Sevick-Muraca E M . Truncated Newton's optimizationscheme for absorption and fluorescence optical tomography: part Itheory and formulation. Optics Express, 1999, 4(10): 353–371
17 Roy R, Sevick-Muraca E M . Truncated Newton's optimizationscheme for absorption and fluorescence optical tomography: part IIreconstruction from synthetic measurements. Optics Express, 1999, 4(10): 372–382
18 Ntziachristos V, Weissleder R . Charge-coupled-device basedscanner for tomography of fluorescent near-infrared probes in turbidmedia. Medical Physics, 2002, 29(5): 803–809.
doi:10.1118/1.1470209
19 Mahmood U, Tung C, Bogdanov A, et al.. Near-infrared optical imaging system to detecttumor protease activity. Radiology, 1999, 213(3): 866–870
20 Benaron D A, Hintz S R, Villringer A, et al.. Noninvasive functional imaging of human brainusing light. Journal of Cerebral BloodFlow & Metabolism, 2000, 20(3): 469–477
21 Firbank M, Oda M, Delpy D T . An improved design for a stable and reproducible phantommaterial for use in near-infrared spectroscopy and imaging. Physics in Medicine and Biology, 1995, 40(5): 955–961.
doi:10.1088/0031-9155/40/5/016
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed